Thu Dau Mot University Journal of Science


A new class of bilevel weak vector variational inequality problems

By Nguyen Van Hung, Vo Viet Tri
DOI: 10.37550/tdmu.EJS/2020.04.078

Abstract

In this paper, we first introduce a new class of bilevel weak vector variational
inequality problems in locally convex Hausdorff topological vector spaces.
Then, using the Kakutani-Fan-Glicksberg fixed-point theorem, we establish
some existence conditions of the solution for this problem.


Full text

View PDF

References


[1] Aubin, J.P,, Ekeland, I., Applied Nonlinear Analysis. John Wiley and Sons,
New York, 1984
[2] Anh, L.Q., Hung, N.V.: Stability of solution mappings for parametric bilevel
vector equilibrium problems, Comput. Appl. Math.,
37, 1537-1549 (2018).
[3] Ding, X.P.: Existence and iterative algorithm of solutions for a class of bilevel
generalized mixed equilibrium problems in Banach spaces, J. Glob. Optim.
53,
525{537 (2012)
[4] Fan, K.: A generalization of Tychonoff’s fixed point theorem, Math Ann.
142,
305{310 (1961)
[5] Hai, N.X., Khanh, P.Q.: Existence of solution to general quasiequilibrium problem and applications, J. Optim. Theory Appl.
133, 317{327 (2007)
[6] Hung, N.V., O’Regan D.: Bilevel equilibrium problems with lower and upper
bounds in locally convex Hausdorff topological vector spaces, Topology Appl.
269, 106939
[7] Hung, N.V., Hai, N.M.: Stability of approximating solutions to parametric
bilevel vector equilibrium problems and applications, Comput. Appl. Math.,
38, 17pp (2019)
Nguyen Van Hung, Vo Viet Tri - Volume 2 - Issue 4-2020, p.321-331
[8] Hung, N.V., Kobis, E., Tam, V.M.: Existence of solutions and iterative algorithms for weak vector quasi-equilibrium problems, J. Nonlinear Convex Anal.
21, 463-478 (2020)
[9] Hung, N.V., Tam, V.M., Kobis, E., Yao, J.C: Existence of solutions and algorithm for generalized vector quasi-complementarity problems with application
to traffic network problems, J. Nonlinear Convex Anal.
20, 1751-1775 (2019)
[10] Hung, N.V., Tri, V.V., O’Regan D.: Existence conditions for solutions of bilevel
vector equilibrium problems with application to traffic network problems with
equilibrium constraints, Positivity, (2020), online first.
[11] Holmes, R.B.: Geometric Functional Analysis and its Application. SpringerVerlag, New York, (1975)
[12] Mordukhovich, B.S.: Equilibrium problems with equilibrium constraints via
multiobjective optimization. Optim. Methods Softw.
19, 479{492 (2004)






Publication Information

Publisher

Thu Dau Mot University, Viet Nam

Honorary Editor-in-Chief and Chairman of the Editorial Board

Assoc. Prof. Nguyen Van Hiep

Deputy Editor-in-Chief

PhD. Trần Hạnh Minh Phương
Thu Dau Mot University

Editorial Board

Prof. Tran Van Doan
Fujen University, Taiwan
Prof. Zafar Uddin Ahmed
Vietnam National University Ho Chi Minh City

Prof.Dr. Phillip G.Cerny
The University of Manchester, United Kingdom
Prof. Ngo Van Le
University of Social Sciences and Humanities (VNU-HCM)

Prof. Bui The Cuong
Southern Institute of Social Sciences​​​​​​​
Prof. Le Quang Tri
Can Tho University

Assoc. Prof. Nguyen Van Duc
Animal Husbandry Association of Vietnam
Assoc. Prof. Ted Yuchung Liu
National Pingtung University, Taiwan

PhD. Anita Doraisami
Economics Monash University, Australia
Prof. Dr. Andrew Seddon
Asia Pacific University of Technology & innovation (APU)

Assoc. Prof. Le Tuan Anh
Thu Dau Mot University
Prof. Abtar Darshan Singh
Asia Pacific University, Malaysia

Prof.Dr. Ron W.Edwards
The University of Melbourne, Australia
Assoc. Prof. Hoang Xuan Nien
Thu Dau Mot University

PhD. Nguyen Duc Nghia
Vietnam National University Ho Chi Minh City
PhD. Bao Dat
Monash University (Australia)

PhD. Raqib Chowdhury
Monash University (Australia)
PhD. Nguyen Hoang Tuan
Thu Dau Mot University

PhD. Nguyen Thi Lien Thuong
Thu Dau Mot University

Assistant

Nguyen Thi Man
Thu Dau Mot University