References
Arena P., Fortuna L., Frasca M., La RosaM., (2006). Locally active Hindmarsh-Rose neurons,Chaos Sol. and Fract. 27:405-412.
Dang-Vu Huyen, and Delcarte, C., (2000). Bifurcations and Chaos, an introduction todynamicscontemporary with programs in Pascal, Fortan et Mathematica. Eds Elipses,Université – Mécanique (in french).
Ermentrout, G. B., Terman, D. H., (2009). Mathematical Foundations of Neurosciences.Springer.
Hodgkin, A.L., and Huxley, A. F., (1952). A quantitative description of membrane current andits application to conduction and excitation in nerve. J. Physiol. 117: 500-544.
Izhikevich, E. M., (2007). Dynamical Systems in Neuroscience. The MIT Press.
Keener, J. P., and Sneyd, J., (2009). Mathematical Physiology. Springer.
Murray, J. D., (2010). Mathematical Biology. Springer.
Nagumo, J., Arimoto, S., and Yoshizawa, S., (1962). An active pulse transmission linesimulating nerve axon. Proc. IRE. 50: 2061-2070.
Nikolov S., (2005). An alternative bifurcation analysis of the Rose-Hindmarsh model, ChaosSolitons and Fractal. 23:1643-1649.