In this paper, we establish compactness and continuous dependence on parameters for solution-set of the second order differential inclusion including self-adjoint operator in the form
\begin{align*}
\left\{ \begin{gathered}
\frac{\partial^2}{\partial t^2} u(t,x) +2\mathcal{A} \frac{\partial}{\partial t}u(t,x)+\mathcal{A}^{2} u(t,x) \in F(t,u(t),\mu),\,\, \hfill (t,x)\in [0,T)\times\Omega \\
u(0,x)=\frac{\partial }{\partial t}u(0,x)=0, \,\, \hfill x \in \Omega, \\
%u(T,x) = h(x), \,\, \hfill x\in\Omega,
\end{gathered}\right. %\label{MainProblem}
\end{align*}
where $\mathcal A$ is a self-adjoint operator.
We use the spectral theory on Hilbert spaces to obtain formulation for mild solutions. Using the mild solution formula together with a measure of non-compactness with values in an ordered space, we construct useful bounds for solution operators. Then, we establish necessarily upper semi-continuous and condensing settings, which mainly help to obtain the global existence of mild solutions and the compactness of the mild solution set. Finally, we provide a brief discussion on the continuous dependence of the solution-set on parameter $\mu$.
Publication Information
Publisher
Thu Dau Mot University, Viet Nam
Honorary Editor-in-Chief and Chairman of the Editorial Board
Assoc. Prof. Nguyen Van Hiep
Deputy Editor-in-Chief
PhD. Trần Hạnh Minh Phương Thu Dau Mot University
Editorial Board
Prof. Tran Van Doan Fujen University, Taiwan
Prof. Zafar Uddin Ahmed Vietnam National University Ho Chi Minh City
Prof.Dr. Phillip G.Cerny The University of Manchester, United Kingdom
Prof. Ngo Van Le University of Social Sciences and Humanities (VNU-HCM)
Prof. Bui The Cuong Southern Institute of Social Sciences
Prof. Le Quang Tri Can Tho University
Assoc. Prof. Nguyen Van Duc Animal Husbandry Association of Vietnam
Assoc. Prof. Ted Yuchung Liu National Pingtung University, Taiwan
PhD. Anita Doraisami Economics Monash University, Australia
Prof. Dr. Andrew Seddon Asia Pacific University of Technology & innovation (APU)
Assoc. Prof. Le Tuan Anh Thu Dau Mot University
Prof. Abtar Darshan Singh Asia Pacific University, Malaysia
Prof.Dr. Ron W.Edwards The University of Melbourne, Australia
Assoc. Prof. Hoang Xuan Nien Thu Dau Mot University
PhD. Nguyen Duc Nghia Vietnam National University Ho Chi Minh City
PhD. Bao Dat Monash University (Australia)
PhD. Raqib Chowdhury Monash University (Australia)
PhD. Nguyen Hoang Tuan Thu Dau Mot University
PhD. Nguyen Thi Lien Thuong Thu Dau Mot University