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ABSTRACT
In this paper, we consider the Robin-Dirichlet problem for a system of nonlinear pseu-
doparabolic equations with viscoelastic term. By the Faedo-Galerkin method, we first prove
the existence and uniqueness of solution for the problem. Next, we give a sufficient condition
to get the global existence and decay of the weak solution. Finally, by the concavity method,
we prove the blow-up result of the solution when the initial energy is negative. Furthermore,
we establish here the lifespan of the solution by finding the upper bound and the lower bound
for the blow-up time.
Keywords: Nonlinear pseudoparabolic equations; Faedo-Galerkin method; Local existence;
Blow-up; Lifespan; The global existence and decay of weak solutions.

1 Introduction

In this paper, we consider the initial-boundary value problem for the system of nonlinear pseu-
doparabolic equations with the Robin-Dirichlet boundary conditions as follows

ut − λ1utxx −
∂

∂x
(µ1(x, t)ux) = f1(x, t, u, v, ux, vx), 0 < x < 1, 0 < t < T,

vt − λ2vtxx −
∂

∂x
(µ2(x, t)vx) +

∫ t

0
g(t− s)vxx(x, s)ds

= f2(x, t, u, v, ux, vx), 0 < x < 1, 0 < t < T,
ux(0, t)− ζu(0, t) = u(1, t) = v(0, t) = v(1, t) = 0,
(u(x, 0), v(x, 0)) = (ũ0(x), ṽ0(x)) ,

(1.1)

where ζ ≥ 0, λ1, λ2 > 0 are given constants and g, µi, fi, (i = 1, 2), ũ0, ṽ0 are given functions satisfying
conditions specified later.

The pseudoparabolic equation

ut − uxxt = F (x, t, u, ux, uxx, uxt) , 0 < x < 1, t > 0, (1.2)

with the initial condition u(x, 0) = ũ0(x) and different boundary conditions has been extensively
studied by many authors, see for example [3], [8], [10]- [15], [18], [20], [22] among others and the
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references given therein. In these works, numerous interesting results related to existence, asymptotic
behavior, blowup, and decay of solutions were obtained.

An important special case of the model (1.2) is the Benjamin-Bona-Mahony-Burgers (BBMB)
equation

ut + ux + uux − νuxx − α2uxxt = 0, (1.3)

it was studied by Amick et al. [1] with ν > 0, α = 1, x ∈ R, t ≥ 0, in which the solution of (1.3) with
initial data in L1∩H2 decays to zero in L2 norm as t→ +∞. With ν > 0, α > 0, x ∈ [0, 1], t ≥ 0, the
model has the form (1.3) was also investigated earlier by Bona and Dougalis [2], where uniqueness,
global existence and continuous dependence of solutions on initial and boundary data were established
and the solutions were shown to depend continuously on ν ≥ 0 and on α > 0. The results obtained
in [1] were developed by many authors, such as by Zhang [23] for equations of the form

ut − νuxx − uxxt − ux + umux = 0, (1.4)

where m ≥ 0, see Meyvaci [8].
The linear version of (1.2) was first studied by S.L. Sobolev [17] in 1954. Therefore, the equation

of the form (1.2) is also called a Sobolev type equation. Mathematical study of pseudo-parabolic
equations goes back to works of Showalter (see [14]- [16]) in the seventies, since then, numerous of
interesting results about linear and nonlinear pseudoparabolic equations have been obtained. It is
also well known that the work [16] is the first paper on nonlinear pseudoparabolic equation. These
equations appear in the study of various problems of hydrodynamics, thermodynamics and filtration
theory, see M. Meyvaci [8] and the references given therein.

The problem (1.1) is a kind of viscoelastic pseudoparabolic problem, the Volterra integral in the
second equation of (1.1) is a memory term, also known as called the viscoelastic term, is the cause
of viscoelastic damping. In recent years, much attention has been paid to pseudo-parabolic equations
with memory terms or viscoelastic terms. For instance, Shang and Guo [13] proved the existence,
uniqueness, regularities of the global strong solution and gave some conditions of the nonexistence of
global solution for the nonlinear pseudoparabolic equation with Volterra integral term

ut − f(u)xx − uxxt −
∫ t

0
λ(t− s) (σ (u(x, s), ux(x, s)))x ds = f (x, t, u, ux) ,

0 < x < 1, t > 0. (1.5)

In [18], Sun et. al. considered the Dirichlet problem for the nonlinear pseudoparabolic equation with
a power source term and a memory term as follows

ut −∆u−∆ut +

∫ t

0
g(t− τ)∆u(τ)dτ = |u|p−2 u, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),
u(0) = u0, in Ω,

(1.6)

where Ω is a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω, p > 2, T ∈ (0,∞], u0 ∈ H1(Ω)
and g : R+ → R+ is a positive nonincreasing function. The authors used the Levine’s classical
concavity method and the improved potential well method to obtain the global existence and the
finite time blow-up phenomena of solutions.

Recently, in [10], the following initial boundary problem for a nonlinear pseudoparabolic equation
containing a viscoelastic term

ut −
(
µ (t) + α (t)

∂

∂t

)
(uxx +

1

x
ux) +

∫ t

0
g (t− s) (uxx(s) +

1

x
ux(s))ds

= f (x, t, u) , 1 < x < R, t > 0,
ux(1, t)− ζu(1, t) = u(R, t) = 0,
u(x, 0) = ũ0(x),

(1.7)
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has been considered, and the results of existence, uniqueness, blow-up and decay estimates of the
solution for (1.7) have been proved. Furthermore, the authors also established the lifespan for the
solution via finding the upper bound and the lower bound for the blow-up times. Generalizing the
results in [10], the authors in [12] studied general decay and blow-up of solutions for the following
pseudoparabolic nonlinear equation of Kirchhoff-Carrier type with viscoelastic term

ut −
(
µ
(
t, ∥u(t)∥20 , ∥u(t)∥

2
a

)
+ α (t)

∂

∂t

)
(uxx +

1

x
ux) (1.8)

+

∫ t

0
g (t− s) (uxx(s) +

1

x
ux(s))ds

= f (x, t, u, ux, ut) , 1 < x < R, t > 0,

associated with the initial condition and the nonlocal boundary condition (1.7)2,3, in which ∥u(t)∥20 =∫ R

1
xu2(x, t)dx, ∥u(t)∥2a =

∫ R

1
xu2x(x, t)dx+ ζu2(1, t).

At the present time, to the best of our knowledge, there are many publications on properties of
solutions to single parabolic/pseudoparabolic equations, but it seems that there are relatively few
results for systems of these types. We refer to some results as in [3], [4]- [6] and the references therein.
And recently in [11], Ngoc et. al. have also considered the initial-boundary value problem for the
system of nonlinear pseudoparabolic equations with Robin-Dirichlet conditions and established here
the existence, uniqueness, blow-up and general decay of solutions.

Inspired and motivated by the idea of the above mentioned works, we study the existence, unique-
ness, blow-up and general decay of solutions for Prob. (1.1). This paper consists of three sections.
Section 2 presents preliminaries and Section 3 presents the main results. In Subsection 3.1, by
using the linear approximating method together with the Galerkin method, we establish the lo-
cal existence and uniqueness of a weak solution. Subsection 3.2, we consider Prob. (1.1) with
fi(x, t, u, v, ux, vx) = fi(u, v) + Fi(x, t), i = 1, 2, and prove a sufficient condition for the global ex-
istence and decay of solution via the energy method. Finally, Subsection 3.3 is devoted to the study of
the blow-up property for Prob. (1.1) in the special case fi(x, t, u, v, ux, vx) = fi(u, v), i = 1, 2. Based
on the concavity method and the improved potential method, we describe the blow-up phenomenon of
solution with negative initial energy.This section also derives the lifespan for solution via finding the
upper bound and the lower bound for the blow-up time. The results obtained here relatively generalize
the results in [10]- [12] and those are based on applying the methods and technics in [9], [11].

2 Preliminaries

First, we put Ω = (0, 1), QT = Ω × (0, T ), T > 0 and denote the usual function spaces used in this
paper by the notations Lp = Lp(Ω), Hm = Hm (Ω) . Let ⟨·, ·⟩ be either the scalar product in L2 or the
dual pairing of a continuous linear functional and an element of a function space. The notation ∥·∥
stands for the norm in L2 and we denote by ∥·∥X the norm in the Banach space X. We call X ′ the
dual space of X.

We denote Lp(0, T ;X), 1 ≤ p ≤ ∞ the Banach space of real functions u : (0, T ) → X measurable,
such that ∥u∥Lp(0,T ;X) < +∞, with

∥u∥Lp(0,T ;X) =


(∫ T

0
∥u(t)∥pX dt

)1/p

, if 1 ≤ p <∞,

ess sup
0<t<T

∥u(t)∥X , if p = ∞.

Denote u(t) = u(x, t), u′(t) = ut(t) =
∂u

∂t
(x, t), u′′(t) = utt(t) =

∂2u

∂t2
(x, t), ux(t) =

∂u

∂x
(x, t),
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uxx(t) =
∂2u

∂x2
(x, t).

With f ∈ Ck([0, 1]× [0, T ∗]×R4), f = f(x, t, y1, · · · , y4), we put D1f =
∂f

∂x
, D2f =

∂f

∂t
, Di+2f =

∂f

∂yi
, i = 1, · · · , 4 and Dαf = Dα1

1 · · ·Dα6
6 f, α = (α1, · · · , α6) ∈ Z6

+, |α| = α1 + · · · + α6 ≤ k,

D(0,··· ,0)f = D0f = f.

Similarly, with µ ∈ Ck([0, 1] × [0, T ∗]), µ = µ(x, t), we set D1µ =
∂µ

∂x
, D2µ =

∂µ

∂t
, và Dβµ =

Dβ1
1 D

β2
2 µ, β = (β1, β2) ∈ Z2

+, |β| = β1 + β2 ≤ k, D(0,0)µ = µ.

On H1, we use the norm ∥v∥H1 =
(
∥v∥2 + ∥vx∥2

) 1
2
, and we define the following closed subspace

V of H1

V = {v ∈ H1 : v(1) = 0}. (2.1)

Then, we have the following standard lemmas concerning the imbeddings of H1 into C0(Ω̄) and
of V into C0(Ω̄).

Lemma 2.1. The imbedding H1 ↪→ C0(Ω̄) is compact, and

∥v∥C0(Ω̄) ≤
√
2∥v∥H1 , ∀v ∈ H1.

Lemma 2.2. The imbedding V ↪→ C0(Ω̄) is compact. Moreover, we have

(i) ∥v∥C0(Ω) ≤ ∥vx∥ , ∀v ∈ V,

(ii) 1√
2
∥v∥H1 ≤∥vx∥ ≤ ∥v∥H1 , ∀v ∈ V.

For T ∗ > 0, let ζ ≥ 0 and µ1 ∈ C1
(
Ω̄× [0, T ∗]

)
, µ′1 ∈ C0

(
Ω̄× [0, T ∗]

)
. On V × V, we consider

the symmetric bilinear forms a(·, ·), and the famillies of symmetric bilinear forms {ā (t; ·, ·)}t∈[0,T ],

{ā′(t; ·, ·)}t∈[0,T ] defined by

a(u, φ) = ⟨ux, φx⟩+ ζu(0)φ(0), (2.2)

ā (t;u,φ) = ⟨µ1 (t)ux, φx⟩+ ζµ1 (0, t)u (0)φ (0) ,

ā′ (t;u, φ) =
〈
µ′1(t)ux, φx

〉
+ ζµ′1 (0, t)u (0)φ (0) , ∀(u, φ) ∈ V × V, t ∈ [0, T ∗] .

Then we can prove the following properties without difficulty.

Lemma 2.3. Let ζ ≥ 0 and µ1, µ
′
1 ∈ C0

(
Ω̄× [0, T ]

)
such that µ1(x, t) ≥ µi∗ > 0 for all (x, t) ∈

Ω̄× [0, T ]. Then,
(i) The symmetric bilinear form a(·, ·), and the family of symmetric bilinear form {ā (t; ·, ·)}t∈[0,T ]

defined by (2.2) are continuous on V × V and coercive in V .
(ii) The family of symmetric bilinear form {ā′(t; ·, ·)}t∈[0,T ∗] defined by (2.2) are continuous on V ×V.

Moreover, we have

a (u, u) ≥ ∥ux∥2, ∀u ∈ V,

|a (u, φ)| ≤ (1 + ζ) ∥ux∥ ∥φx∥ , ∀u, φ ∈ V,

ā (t;u, u) ≥ µ1∗∥u∥2a ≥ µ1∗∥ux∥2, ∀u ∈ V, t ∈ [0, T ∗] ,

|ā (t;u, φ)| ≤ ∥µ1∥C0(Ω̄×[0,T ∗]) ∥u∥a ∥φ∥a
≤ ∥µ1∥C0(Ω̄×[0,T ∗]) (1 + ζ) ∥ux∥ ∥φx∥ , ∀u, φ ∈ V, t ∈ [0, T ∗] ,∣∣ā′(t;u, φ)∣∣ ≤ ∥∥µ′1∥∥C0(Ω̄×[0,T ∗]) ∥u∥a ∥φ∥a
≤

∥∥µ′1∥∥C0(Ω̄×[0,T ∗]) (1 + ζ) ∥ux∥ ∥φx∥ , ∀u, φ ∈ V, t ∈ [0, T ∗] ,

in which
∥u∥a=

√
a (u, u), ∀u ∈ V.
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3 Main results

3.1 The existence and uniqueness of a weak solution

Consider T ∗ > 0 fixed. We make the following assumptions:

(H1) (ũ0, ṽ0) ∈ (H2 ∩ V )× (H2 ∩H1
0), ũ0x(0)− ζũ0(0) = 0;

(H2) µ1, µ2 ∈ C2 ([0, 1]× [0, T ∗]) , and there exist the positive constants
µ1∗, µ2∗ such that µi (x, t) ≥ µi∗, ∀ (x, t) ∈ [0, 1]× [0, T ∗] , i = 1, 2;

(H3) g ∈ H1 (0, T ∗) ;
(H4) fi ∈ C1

(
[0, 1]× [0, T ∗]× R4

)
, i = 1, 2, such that

f1(1, t, 0, 0, y3, y4) = f2(1, t, 0, 0, y3, y4) = f2(0, t, y1, 0, y3, y4) = 0,
∀t ∈ [0, T ∗] , ∀y = (y1, y3, y4) ∈ R3.

For each T ∈ (0, T ∗], we denote

WT = {(u, v) ∈ L∞ (
0, T ; (H2 ∩ V )× (H2 ∩H1

0)
)
: (3.1)

(u′, v′) ∈ L∞ (
0, T ; (H2 ∩ V )× (H2 ∩H1

0)
)
},

W1 (T ) =
{
(u, v) ∈ C0([0, T ];V ×H1

0) :
(
u′, v′

)
∈ L2

(
0, T ;V ×H1

0

)}
,

are Banach spaces (see Lions [7]) with respect to the norms

∥(u, v)∥WT

= max
{
∥(u, v)∥L∞(0,T ;(H2∩V )×(H2∩H1

0))
,
∥∥(u′, v′)∥∥

L∞(0,T ;(H2∩V )×(H2∩H1
0))

}
, (3.2)

∥(u, v)∥W1(T ) = ∥(u, v)∥C0([0,T ];V×H1
0)
+
∥∥(u′, v′)∥∥

L2(0,T ;V×H1
0)
.

Definition 3.1. For each T ∈ (0, T ∗] , a couple of functions (u, v) ∈ WT is called a weak solution of
Prob. (1.1) if and only if (u, v) satisfies the following variational problem

⟨u′(t), φ⟩+ λ1a(u
′(t), φ) + ā(t;u(t), φ) = ⟨f1[u, v](t), φ⟩,

⟨v′(t), ψ⟩+ λ2⟨v′x(t), ψx⟩+ ⟨µ2(t) vx(t), ψx⟩ =
∫ t

0
g (t− s) ⟨vx(s), ψx⟩ds+

⟨f2[u, v](t), ψ⟩,

(3.3)

for all (φ,ψ) ∈ V ×H1
0, and a.e. t ∈ (0, T ), together with the initial condition

(u(0), v(0)) = (ũ0, ṽ0) , (3.4)

where
fi[u, v](x, t) = fi(x, t, u(x, t), v(x, t), ux(x, t), vx(x, t)), i = 1, 2. (3.5)

For each M > 0 given, we set the constant

BT (M) = {(u, v) ∈WT : ∥(u, v)∥WT
≤M}. (3.6)

Now, we establish the following recurrent sequence {(um, vm)}. The first term is chosen as (u0, v0) ≡
(0, 0) , suppose that

(um−1, vm−1) ∈ BT (M). (3.7)

Find (um, vm) ∈ BT (M) (m ≥ 1) satisfying the linear variational problem
⟨u′m(t), φ⟩+ λ1a(u

′
m(t), φ) + ā(t;um(t), φ) = ⟨F1m(t), φ⟩,

⟨v′m(t), ψ⟩+ λ2⟨v′mx(t), ψx⟩+ ⟨µ2 (t) vmx(t), ψx⟩

=

∫ t

0
g (t− s) ⟨vmx(s), ψx⟩ds+ ⟨F2m(t), ψ⟩, ∀(φ,ψ) ∈ V ×H1

0, a.e. t ∈ (0, T ),

(um(0), vm(0)) = (ũ0, ṽ0) ,

(3.8)
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in which
Fim(x, t) = fi[um−1, vm−1](x, t), i = 1, 2. (3.9)

Then we have the following theorem.

Theorem 3.2. Let (H1)− (H4) hold. Then there exist constants M, T > 0 such that, for (u0, v0) ≡
(0, 0) , there exists a recurrent sequence {(um, vm)} ⊂ BT (M) defined by (3.7)-(3.9).

Proof. The proof of Theorem 3.2 is based on the Faedo-Galerkin approximation (introduced by Lions
[7]) associated with a priori estimate, thereby deriving weakly converging subsequences in appropriate
function spaces via the compact imbedding theorems. Here, the Banach’s contraction principle is also
used to prove the existence of a Faedo-Galerkin approximation solution.

The convergence of the recurrent sequence {(um, vm)} to the weak solution (u, v) of Prob. (1.1) is
given by the following theorem, whose proof can be referenced in [11].

Theorem 3.3. Suppose that (H1) − (H4) are satisfied. Then, the recurrent sequence {(um, vm)}
defined by (3.7)-(3.9) converges strongly to a couple of functions (u, v) in W1(T ) and (u, v) ∈ BT (M)
is the unique weak solution of Prob. (1.1). Moreover, we have the following estimate

∥(um, vm)− (u, v)∥W1(T ) ≤ CTk
m
T , for all m ∈ N, (3.10)

where kT ∈ [0, 1) and CT is a constant depending only on T, f1, f2, g, µ1, µ2, ũ0, ṽ0 and kT .

3.2 General decay of the solution

In this subsection, Prob. (1.1) is considered in the form

ut − λ1utxx −
∂

∂x
(µ1(x, t)ux) = f1(u, v) + F1(x, t), 0 < x < 1, t > 0,

vt − λ2vtxx −
∂

∂x
(µ2(x, t)vx) +

∫ t

0
g(t− s)vxx(x, s)ds

= f2(u, v) + F2(x, t), 0 < x < 1, t > 0,
ux(0, t)− ζu(0, t) = u(1, t) = v(0, t) = v(1, t) = 0,
(u(x, 0), v(x, 0)) = (ũ0(x), ṽ0(x)) ,

(3.11)

where ζ ≥ 0; λ1, λ2 > 0 are given constants and ũ0, ṽ0, g, µi, fi, Fi, (i = 1, 2), are given functions
satisfying conditions specified later.

3.2.1 Local existence and Uniqueness

Based on the results obtained in Subsection 3.1, we can propose the following assumptions to
get the local existence and uniqueness of a weak solution for Prob. (3.11).

(H̃1) (ũ0, ṽ0) ∈ V ×H1
0;

(H̃2) µ1, µ2 ∈ C1 ([0, 1]× R+) , and there exist the positive constants µ1∗, µ2∗
such that µi (x, t) ≥ µi∗, ∀ (x, t) ∈ [0, 1]× R+, i = 1, 2;

(H̃3) g ∈ C1(R+;R+);

(H̃4) There exist the function F ∈ C2
(
R2;R

)
and the positive constants

d̄2 > 0, α > 2, β > 2, such that

(i)
∂F
∂u

= f1(u, v),
∂F
∂v

= f2(u, v), ∀ (u, v) ∈ R2,

(ii) F(u, v) ≤ d̄2

(
1 + |u|α + |v|β

)
, ∀ (u, v) ∈ R2;

(H̃5) Fi ∈ L2
(
R+;L

2
)
, i = 1, 2.

Using the standard arguments of density and Theorem 3.3, we obtain the following theorem.
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Theorem 3.4. Let (H̃1) − (H̃5) hold. Then, there exists T > 0 such that Prob. (3.11) has a unique
solution (u, v) satisfying

(u, v) ∈ C0([0, T ];V ×H1
0) và

(
u′, v′

)
∈ L2(0, T ;V ×H1

0).

3.2.2 Global existence and general decay of the solution

We strengthen the following assumptions

(H̃1) (ũ0, ṽ0) ∈ V ×H1
0;

(D2) µ1, µ2 ∈ C1 ([0, 1]× R+) , and there exist the positive constants µ1∗, µ2∗
such that µi (x, t) ≥ µi∗, µ

′
i (x, t) ≤ 0, ∀ (x, t) ∈ [0, 1]× R+, i = 1, 2;

(D3) g ∈ C1(R+) ∩ L1(R+), and there exists the function ζ ∈ C1 (R+) such that

(i) ζ ′(t) ≤ 0 < ζ(t), ∀t ≥ 0,

∫ ∞

0
ζ(t)dt = +∞,

(ii) g′(t) ≤ −ζ(t)g(t), 0 < g(t) ≤ g(0), ∀t ≥ 0,

(iii) L∗ ≡ µ2∗ −
∫ ∞

0
g(s)ds > 0;

(D4) There exists the function F ∈ C2
(
R2;R

)
and the positive constants

d2 > p, d̄2 > 0, qi > 2, q̄i > 2 (i = 1, · · · , N), such that
(i) D1F(u, v) = f1(u, v), D2F(u, v) = f2(u, v), ∀ (u, v) ∈ R2,
(ii) uf1(u, v) + vf2(u, v) ≤ d2F(u, v), ∀ (u, v) ∈ R2,

(iii) F(u, v) ≤ d̄2

N∑
i=1

(
|u|q1 + |v|q̄1

)
, ∀ (u, v) ∈ R2;

(D5) Fi ∈ L2
(
R+;L

2
)
such that there exist two constants C̄0 > 0, γ̄0 > 0,

satisfying ∥F1(t)∥2 + ∥F2(t)∥2 ≤ C̄0e
−γ̄0t, ∀t ≥ 0;

(D6) p > max{2, d2}, and 0 < ḡ(∞) <
d2η∗
p− d2

+ µ2∗.

Remark 3.5. We give an example of the functions g(t), f1(u, v), f2(u, v) satisfying (D3), (D4) as
below

g(t) = σ exp

(
−
∫ t

0
ζ(s)ds

)
,

f1(u, v) = αk1 |u|α−2 u+ α1k3 |u|α1−2 u |v|β1 ,

f2(u, v) = βk2 |v|β−2 v + β1k3 |u|α1 |v|β1−2 v,

where σ, k1, k2, k3 > 0, α, β, α1, β1 > 2 are constants, ζ ∈ C1 (R+) such that ζ ′(t) ≤ 0 < ζ(t), ∀t ≥ 0,∫ ∞

0
ζ(t)dt = +∞.

Now, we consider the Lyapunov functional defined as follows

L(t) = E(t) + δΨ(t), t > 0,

where δ > 0 is chosen later and

E(t) =
1

2
Ẽ(t)−F(t) =

1

2
Ẽ(t)−F(t) =

(
1

2
− 1

p

)
Ẽ(t) +

1

p
I(t), (3.13)

Ψ(t) =
1

2
∥u(t)∥2 + 1

2
∥v(t)∥2 + λ1

2
∥u(t)∥2a +

λ2
2

∥vx(t)∥2 , (3.14)

7
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in which

Ẽ(t) = (g∗♢u)(t) + (g ∗ v)(t) + ā(t;u(t), u(t)) +
∥∥∥√µ2(t)vx(t)

∥∥∥2 − ḡ(t) ∥vx(t)∥2 , (3.15)

F(t) =

∫ 1

0
F (u(x, t), v(x, t)) dx,

I(t) = I (u(t)) = Ẽ(t)− pF(t),

(g ∗ v)(t) =
∫ t

0
g(t− s) ∥vx(t)− vx(s)∥2 ds,

ḡ(t) =

∫ t

0
g(s)ds,

(g∗♢u)(t) =
∫ t

0
g∗(t− s)

∥∥u′(s)∥∥2 ds,
with g∗(t) = 2λ̄∗e

−2k̄∗t, where k̄∗, λ̄∗ are the positive constants sucth that k̄∗ > 0, 0 < λ̄∗ < 1.

In the following, we prove that if

I(0) = ā(0; ũ0, ũ0)+
∥∥∥√µ2(0)ṽ0x

∥∥∥2− p ∫ 1

0
F(ũ0(x), ũ0(x))dx > 0, and if the initial energy is small

enough, then global existence is obtained and the energy of the solution decays as t→ +∞.

First, we estimate E′(t).

Lemma 3.6. Suppose that (H̃1), (D2)− (D6) hold. Then

E′(t) ≤ −
(
1− λ̄∗ −

ε1
2

)(∥∥u′(t)∥∥2 + ∥∥v′(t)∥∥2) (3.16)

− k̄∗(g∗♢u)(t)−
1

2
ζ(t)(g ∗ v)(t) + 1

2ε1
ρ1(t),

∀ε1 > 0, ∀t > 0, in which ρ1(t) = ∥F1(t)∥2 + ∥F2(t)∥2 .

Proof. Multiplying the equation (3.11) by (u′(x, t), v′(x, t)) and integrating on (0, 1), we get

E′(t) =
1

2

[
ā′(t;u(t), u(t)) +

∫ 1

0
µ′2(x, t)v

2
x(x, t)dx

]
(3.17)

−
(
1− λ̄∗

) ∥∥u′(t)∥∥2 − ∥∥v′(t)∥∥2 − λ1
∥∥u′(t)∥∥2

a
− λ2

∥∥v′x(t)∥∥2
− k̄∗(g∗♢u)(t) +

1

2
(g′ ∗ v)(t)− 1

2
ḡ(t) ∥vx(t)∥2 + ⟨F1(t), u

′(t)⟩+ ⟨F2(t), v
′(t)⟩.

On the other hand, we have

ā′(t;u(t), u(t)) +

∫ 1

0
µ′2(x, t)v

2
x(x, t)dx ≤ 0, (3.18)

⟨F1(t), u
′(t)⟩+ ⟨F2(t), v

′(t)⟩ ≤ ε1
2

(∥∥u′(t)∥∥2 + ∥∥v′(t)∥∥2)+
1

2ε1
ρ1(t),

1

2
(g′ ∗ v)(t) ≤ −1

2
ζ(t)(g ∗ v)(t), ∀ε1 > 0, ∀t > 0.

Then, (3.17) and (3.18) lead to (3.16). Lemma 3.6 is proved.

Next, using Lemma 3.6, we prove the following lemma in order to obtain the global existence.

8
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Lemma 3.7. Assume that (D2)− (D6) hold. Let (ũ0, ṽ0) ∈ V ×H1
0 such that I(0) > 0 and the initial

energy E(0) satisfy

η∗ ≡ L∗ − pd̄2max

{
N∑
i=1

Rqi−2
∗ ,

N∑
i=1

Rq̄i−2
∗

}
> 0, (3.19)

0 < ḡ(∞) =

∫ ∞

0
g(s)ds <

d2η
∗

p− d2
+ µ2∗,

with

L∗ = min {µ1∗, µ2∗ − ḡ(∞)} > 0, (3.20)

R∗ =

√
2pE∗

(p− 2)L∗
,

E∗ = E(0) +
1

4(1− λ̄∗)

∫ ∞

0

(
∥F1(t)∥2 + ∥F2(t)∥2

)
dt.

Then I(t) > 0, ∀t ≥ 0.

Proof. By the continuity of I(t) and I(0) > 0, there exists T1 > 0 such that

I(t) = I (u(t), v(t)) > 0, ∀t ∈ [0, T1]. (3.21)

It follows from (3.13), (3.21) that

E(t) ≥ p− 2

2p

[
(g∗♢u)(t) + (g ∗ v)(t) + L∗

(
∥u(t)∥2a + ∥vx(t)∥2

)]
, ∀t ∈ [0, T1]. (3.22)

Combining (3.16) in Lemma 3.6 and (3.22), we get

∥u(t)∥2a + ∥vx(t)∥2 ≤
2pE(t)

(p− 2)L∗
≤ 2pE∗

(p− 2)L∗
≡ R2

∗, ∀t ∈ [0, T1]. (3.23)

Based on (D4)(iii), (3.23), it gives

pF(t) = p

∫ 1

0
F (u(x, t), v(x, t)) dx ≤ pd̄2

N∑
i=1

(
∥u(t)∥qiLqi + ∥v(t)∥q̄i

Lq̄i

)
(3.24)

≤ pd̄2max

{
N∑
i=1

Rqi−2
∗ ,

N∑
i=1

Rq̄i−2
∗

}(
∥u(t)∥2a + ∥vx(t)∥2

)
.

Therefore
I(t) ≥ (g∗♢u)(t) + (g ∗ v)(t) + η∗

(
∥u(t)∥2a + ∥vx(t)∥2

)
≥ 0, ∀t ∈ [0, T1]. (3.25)

Put T∞ = sup {T1 > 0 : I(t) > 0, ∀t ∈ [0, T1]} .
Suppose that T∞ < +∞, by the continuity of I(t), we have I(T∞) ≥ 0.
If I(T∞) = 0, using the similar argument as in [11], it implies from (3.25) that I(0) = 0. This is

a contradiction, since I(0) > 0. Thus, I(T∞) > 0.
By the same arguments as above, we can deduce that there exists T̃∞ > T∞ such that I(t) > 0,

∀t ∈ [0, T̃∞]. This is a contradiction to the definition of T∞. Hence, T∞ = +∞, i.e. I(t) > 0, ∀t ≥ 0.
Lemma 3.7 is proved. □

Next, we establish the decay of the solution of (3.11). For this goal, we put

E1(t) = (g∗♢u)(t) + (g ∗ v)(t) + ∥u(t)∥2a + ∥vx(t)∥2 + I(t), (3.26)

and we prove two lemmas (Lemmas 3.8, 3.9) below.

9
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Lemma 3.8. There exist the positive constants β1, β2, β̄1, β̄2 such that

(i) β1E1(t) ≤ L(t) ≤ β2E1(t), ∀t ≥ 0, (3.27)

(ii) β̄1E1(t) ≤ E(t) ≤ β̄2E1(t), ∀t ≥ 0.

Proof. The proof of Lemma 3.8 is not difficult, so we omitt it.

Lemma 3.9. The functional Ψ(t) satisfies the following estimation

Ψ′(t) ≤
(

1

2ε3
+
d2
p

)
(g ∗ v)(t) + d2

p
(g∗♢u)(t)−

δ1d2
p
I(t) (3.28)

−
[
(1− δ1)

d2
p
η∗ +

(
1− d2

p

)
µ1∗ −

ε2
2

]
∥u(t)∥2a

−
[
(1− δ1)

d2
p
η∗ +

(
1− d2

p

)
µ2∗ −

ε2
2

−
(
ε3
2

+ 1− d2
p

)
ḡ(∞)

]
∥vx(t)∥2 +

1

2ε2
ρ1(t),

for all δ1 ∈ (0, 1) and ε2, ε3 > 0, where ρ1(t) = ∥F1(t)∥2 + ∥F2(t)∥2 .

Proof. By multiplying (3.11) by (u(x, t), v(x, t)) and integrating over (0, 1), we get

Ψ′(t) = −ā(t;u(t), u(t))−
∥∥∥√µ2(t)vx(t)

∥∥∥2 + ∫ t

0
g(t− s)⟨vx(s), vx(t)⟩ds (3.29)

+ ⟨f1(u(t), v(t)), u(t)⟩+ ⟨f2(u(t), v(t)), v(t)⟩+ ⟨F1(t), u(t)⟩+ ⟨F2(t), v(t)⟩.

On the other hand, we have

⟨F1(t), u(t)⟩+ ⟨F2(t), v(t)⟩ ≤
ε2
2

(
∥u(t)∥2a + ∥vx(t)∥2

)
+

1

2ε2
ρ1(t), (3.30)∫ t

0
g(t− s)⟨vx(s), vx(t)⟩ds ≤

1

2ε3
(g ∗ v)(t) +

(ε3
2

+ 1
)
ḡ(t) ∥vx(t)∥2 ,

⟨f1(u(t), v(t)), u(t)⟩+ ⟨f2(u(t), v(t)), v(t)⟩

≤ d2
p

[
(g∗♢u)(t) + (g ∗ v)(t) + ā(t;u(t), u(t)) +

∥∥∥√µ2(t)vx(t)
∥∥∥2 − ḡ(t) ∥vx(t)∥2

]
− (1− δ1)

d2
p
η∗

(
∥u(t)∥2a + ∥vx(t)∥2

)
− δ1d2

p
I(t).

Then, it follows from (3.29), (3.30) that (3.28) holds. Lemma 3.9 is proved.

Based on the above results, we deduce the main result in this subsection as follows.

Theorem 3.10. Assume that (D2) − (D6) hold. Let (ũ0, ṽ0) ∈ V × H1
0 such that I(0) > 0 and the

initial energy E(0) satisfy (3.19). Then, there exist positive constants C̄, γ̄ such that

∥u(t)∥2a + ∥vx(t)∥2 ≤ C̄ exp

(
−γ̄

∫ t

0
ζ(s)ds

)
, ∀t ≥ 0. (3.31)

Proof. First, by the definition of L(t) and the inequalities (3.16), (3.28), we get

L′(t) ≤ −
(
1− λ̄∗ −

ε1
2

)(∥∥u′(t)∥∥2 + ∥∥v′(t)∥∥2)− θ̃3(g∗♢u)(t) (3.32)

+ δd3(g ∗ v)(t)−
δδ1d2
p

I(t)− δθ̃1 ∥u(t)∥2a − δθ̃2 ∥vx(t)∥2 +
1

2

(
1

ε1
+

δ

ε2

)
ρ1(t),

10
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with

d3 =
1

2ε3
+
d2
p
, (3.33)

θ̃1 = θ̃1(δ1, ε2) =

[
(1− δ1)

d2
p
η∗ +

(
1− d2

p

)
µ1∗ −

ε2
2

]
,

θ̃2 = θ̃2(δ1, ε2, ε3) =

[
(1− δ1)

d2
p
η∗ +

(
1− d2

p

)
µ2∗ −

ε2
2

−
(
ε3
2

+ 1− d2
p

)
ḡ(∞)

]
,

θ̃3 = k̄∗ −
δd2
p
.

By p > d2 and 0 < ḡ(∞) <
d2η

∗

p− d2
+ µ2∗, we also have

lim
δ1→0+, ε2→0+

θ̃1(δ1, ε2) =
d2
p
η∗ +

(
1− d2

p

)
µ1∗ > 0, (3.34)

lim
δ1→0+, ε2→0+, ε3→0+

θ̃2(δ1, ε2, ε3) =

[
d2
p
η∗ +

(
1− d2

p

)
µ2∗ −

(
1− d2

p

)
ḡ(∞)

]
> 0.

Thus, we can choose δ1 ∈ (0, 1) and ε2, ε3 > 0 small enough such that

θ̃1 = θ̃1(δ1, ε2) > 0, θ̃2 = θ̃2(δ1, ε2, ε3) > 0. (3.35)

With 1− λ̄∗ > 0, we also can choose δ > 0 and ε1 > 0 small enough such that

θ̃3 = k̄∗ −
δd2
p

> 0, 1− λ̄∗ −
ε1
2
> 0. (3.36)

Put

θ∗ = min

{
δθ̃1, δθ̃2, θ̃3,

δδ1d2
p

}
, (3.37)

it implies from (3.32), (3.33), (3.36), (3.37) that

L′(t) ≤ −θ∗E1(t) + (θ∗ + δd3) (g ∗ v)(t) +
1

2

(
1

ε1
+

δ

ε2

)
ρ1(t). (3.38)

Combining (3.16) and (3.38), it leads to

ζ(t)L′(t) ≤ −θ∗ζ(t)E1(t)− 2 (θ∗ + δd3)E
′(t) + C̄1e

−γ̄0t, (3.39)

with C̄1 =

[
θ∗ + δd3

ε1
+

1

2

(
1

ε1
+ δ

ε2

)
ζ(0)

]
C̄0.

For convenience, we consider the new functional L(t) = ζ(t)L(t) + 2 (θ∗ + δd3)E(t), then

L(t) ≤
[
ζ(0)β2 + 2 (θ∗ + δd3) β̄2

]
E1(t) ≡ β̄3E1(t), (3.40)

and

L′(t) ≤ −θ∗ζ(t)E1(t) + C̄1e
−γ̄0t ≤ − θ∗

β̄3
ζ(t)L(t) + C̄1e

−γ̄0t. (3.41)

Choosing γ̄, 0 < γ̄ < min{ θ∗
β̄3
,
γ̄0
ζ(0)

}, from (3.41), we obtain

L′(t) + γ̄ζ(t)L(t) ≤ C̄1e
−γ̄0t. (3.42)

Integrating (3.42), we deduce that

L(t) ≤
(
L(0) +

C̄1

γ̄0 − γ̄ζ(0)

)
exp

(
−γ̄

∫ t

0
ζ(s)ds

)
. (3.43)

Hence, (3.27) and (3.43) lead to (3.31). Theorem 3.10 is proved completely.
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3.2.3 Blow-up and lifespan of the solution

This subsection is devoted to the study of the blow-up property for Prob. (3.11) when F1 = F2 ≡ 0.
First, we make the following assumptions
(H̃1) (ũ0, ṽ0) ∈ V ×H1

0;
(B2) µ1, µ2 ∈ C1 ([0, 1]× R+) , and there exist the positive constants µ1∗, µ2∗

such that µi (x, t) ≥ µi∗, µ
′
i (x, t) ≤ 0, ∀ (x, t) ∈ [0, 1]× R+, i = 1, 2;

(B3) g ∈ C1(R+) ∩ L1(R+), such that
(i) g(t) ≥ 0, g′(t) ≤ 0, ∀t ≥ 0,

(ii) µ2∗ −
∫ ∞

0
g(s)ds > 0,

(iii)

∫ ∞

0
g (s) ds ≤ p (p− 2)µ2∗

(p− 1)2
, with µ∗ = min{µ1∗, µ2∗};

(B4) There exists the function F ∈ C2
(
R2;R

)
and there exist the positive

constants d1 > p, such that
(i) D1F(u, v) = f1(u, v), D2F(u, v) = f2(u, v), ∀ (u, v) ∈ R2, i = 1, 2,
(ii) uf1(u, v) + vf2(u, v) ≥ d1F(u, v) ≥ 0, ∀ (u, v) ∈ R2.

Remark 3.11. The functions f1(u, v), f2(u, v) given in the example of Remark 3.5 also satisfy (B4)
(ii).

Now, we consider the symmetric bilinear forms âi (·, ·), (i = 1, 2), defined by

â1(u, φ) = ⟨u, φ⟩+ λ1a(u, φ), (u, φ) ∈ V × V, (3.44)

â2(v, ψ) = ⟨v, ψ⟩+ λ2⟨vx, ψx⟩, (v, ψ) ∈ H1
0 ×H1

0,

and define the norms

∥u∥â1 =
√
â1(u, u), u ∈ V, (3.45)

∥v∥â2 =
√
â2(v, v), v ∈ H1

0,

We can rewrite Ψ(t) in (3.14) as follows

Ψ(t) =
1

2

(
∥u(t)∥2â1 + ∥v(t)∥2â2

)
. (3.46)

We also consider the functional Ē(t) defined by

Ē(t) =
1

2
(g ∗ v)(t) + 1

2
ā(t;u(t), u(t)) +

1

2

(∥∥∥√µ2(t)vx(t)
∥∥∥2 − ḡ(t) ∥vx(t)∥2

)
−F(t), (3.47)

with

F(t) =

∫ 1

0
F (u(x, t), v(x, t)) dx. (3.48)

We note more that Ē(t) is the functional E(t) as in (3.13), with respect to g∗ ≡ 0. Furthermore,
Ē(0) = E(0).

Lemma 3.12. Assume that (H̃1) and (B2)− (B4) hold. Then we have

d

dt

[
Ē (t) +

∫ t

0

(∥∥u′(s)∥∥2
â1

+
∥∥v′(s)∥∥2

â2

)
ds

]
≤ 0. (3.49)

Moreover, the following energy inequality holds

Ē (t) +

∫ t

0

(∥∥u′(s)∥∥2
â1

+
∥∥v′(s)∥∥2

â2

)
ds ≤ Ē (0) . (3.50)

12
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Proof. Multiplying the equation (3.11) by (u′(x, t), v′(x, t)) and integrating on (0, 1), we obtain

d

dt

[
Ē (t) +

∫ t

0

(∥∥u′(s)∥∥2
â1

+
∥∥v′(s)∥∥2

â2

)
ds

]
(3.51)

=
1

2

[
ā′(t;u(t), u(t)) +

∫ 1

0
µ′2(x, t)v

2
x(x, t)dx

]
+

1

2
(g′ ∗ v)(t)− 1

2
ḡ(t) ∥vx(t)∥2 ≤ 0,

for any regular solution (u, v). We can extend (3.51) to weak solutions by using density arguments.
Combining (H̃1) and (B2)− (B4), Lemma 3.12 is proved.

Theorem 3.13. Assume that (B2) − (B4) hold. Then, for any initial conditions (ũ0, ṽ0) ∈ V ×H1
0

such that E (0) < 0, the weak solution of the Prob. (3.11) with respect to F1 = F2 ≡ 0 blows up at
finite time and the lifespan T∞ of the solution (u, v) satisfies

T∞ ≤ −8(p− 1)Ψ (0)

p(p− 2)2Ē (0)
≡ Tmax

∞ . (3.52)

Furthermore, if in addition the following assumptions
(B4∗) There exists the constant d2 > p such that

(i) uf1(u, v) + vf2(u, v) ≤ d2F(u, v), ∀ (u, v) ∈ R2, ∀ (u, v) ∈ R2,

(ii) F(u, v) ≤ d̄2

N∑
i=1

(
|u|qi + |v|q̄i

)
, ∀ (u, v) ∈ R2, ∀ (u, v) ∈ R2;

(B5∗)

∫ ∞

Ψ(0)

dz

G1 (z)
≤ −8(p− 1)Ψ (0)

p(p− 2)2Ē (0)
,

in which

G1 (z) =
4ḡ(∞)

λ∗
z + (1 + d2)d3

N∑
i=1

(
zqi/2 + zq̄i/2

)
, (3.53)

λ∗ = min{λ1, λ2}, d3 = d̄2max

{(
2

λ∗

)qi/2

,

(
2

λ∗

)q̄i/2

, i = 1, · · · , N

}
,

then, the blow-up time T∞ satisfies

T∞ ≥
∫ ∞

Ψ(0)

dz

G1 (z)
≡ Tmin

∞ . (3.54)

Remark 3.14. The assumption (B5∗) holds if λ∗ = min{λ1, λ2} is small enough.

Proof. We first prove that the solution (u, v) obtained here is not a global solution in R+. Indeed, by
contradiction, we will assume that the weak solution exists in the whole interval R+

For Ē(0) < 0, let 0 < β ≤ −pĒ(0)

p− 1
, τ >

2Ψ (0)

β(p− 2)
, and T0 ≥

βτ2

(p− 2)βτ − 2Ψ (0)
, we define the

auxiliary functional Γ : [0, T0] −→ R as follows

Γ (t) = 2

∫ t

0
Ψ(s) ds+ 2 (T0 − t)Ψ (0) + β(t+ τ)2 , 0 ≤ t ≤ T0. (3.55)

By direct computation, we have

Γ′ (t) = 2Ψ (t)− 2Ψ (0) + 2β (t+ τ) = 2

∫ t

0
Ψ′(s) ds+ 2β (t+ τ) (3.56)

= 2

∫ t

0
â1(u

′ (s) , u (s))ds+ 2

∫ t

0
â2(v

′ (s) , v (s))ds+ 2β (t+ τ) ,

13
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and

Γ′′ (t) = 2Ψ′(t) + 2β. (3.57)

Because of (3.55) and (3.56), it implies that Γ (t) > 0 for all t ∈ [0, T0] and Γ′ (0) = 2βτ > 0.

Using the Cauchy-Schwarz, it follows from (3.56) that

1

2

∣∣Γ′ (t)
∣∣ ≤ [∫ t

0

∣∣â1(u′ (s) , u (s))∣∣ ds+ ∫ t

0

∣∣â2(v′ (s) , v (s))∣∣ ds+ β (t+ τ)

]
(3.58)

≤
√
σ1 (t)

√
σ2 (t) =

√
σ (t),

in which

σ (t) = σ1 (t)σ2 (t) , (3.59)

σ1 (t) =

∫ t

0

(∥∥u′(s)∥∥2
â1

+
∥∥v′(s)∥∥2

â2

)
ds+ β,

σ2 (t) =

∫ t

0

(
∥u(s)∥2â1 + ∥v(s)∥2â2

)
ds+ β (t+ τ)2 = 2

∫ t

0
Ψ(s) ds+ β(t+ τ)2,

then, (3.58) leads to

σ (t) ≥ 1

4

∣∣Γ′ (t)
∣∣2, ∀t ∈ [0, T0] . (3.60)

Therefore, since Γ (t) = σ2 (t) + 2 (T0 − t)Ψ (0) ≥ σ2 (t) , we get

2pΓ (t)σ1 (t) ≥ 2pσ2 (t)σ1 (t) = 2pσ (t) ≥ p

2

∣∣Γ′ (t)
∣∣2. (3.61)

From (3.61), it gives

Γ′′ (t) Γ (t)− p

2

∣∣Γ′ (t)
∣∣2 ≥ 2Γ (t)

[
1

2
Γ′′ (t)− pσ1 (t)

]
= 2Γ (t)D (t) , (3.62)

with

D (t) =
1

2
Γ′′ (t)− pσ1 (t) . (3.63)

On the other hand, by multiplying the equation in (3.11) by (u(x, t), v(x, t)), and then integrating
over (0, 1), it follows from (3.57) that

D (t) = β +Ψ′(t)− pσ1 (t) (3.64)

= β − ā(t;u(t), u(t))−
∥∥∥√µ2(t)vx(t)

∥∥∥2 + ∫ t

0
g(t− s)⟨vx(s), vx(t)⟩ds

+ ⟨f1(u(t), v(t)), u(t)⟩+ ⟨f2(u(t), v(t)), v(t)⟩ (3.65)

− p

[∫ t

0

(∥∥u′(s)∥∥2
â1

+
∥∥v′(s)∥∥2

â2

)
ds+ β

]
.

We can estimate terms on the right hand side of (3.64)∫ t

0
g(t− s)⟨vx(s), vx(t)⟩ds ≥ −p

2
(g ∗ v)(t) +

(
1− 1

2p

)(
ḡ(t) ∥vx(t)∥2

)
, (3.66)

and

⟨f1(u(t), v(t)), u(t)⟩+ ⟨f2(u(t), v(t)), v(t)⟩ ≥ d1F(t). (3.67)

14
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Combining (3.47), (3.50), (3.64)-(3.67), we obtain

D (t) ≥ −pĒ (0)− (p− 1)β + (d1 − p)F(t) +
(p− 2)µ1∗

2
∥u(t)∥2a (3.68)

+
(p− 1)2

2p

[
p(p− 2)µ2∗
(p− 1)2

− ḡ(∞)

]
∥vx(t)∥2 ≥ 0,

because of d1 > p > 2, 0 < ḡ(∞) ≤ p(p− 2)µ2∗
(p− 1)2

and 0 < β ≤ −pĒ(0)

p− 1
.

It implies from (3.62) and (3.68) that

Γ
p
2−1 (t) ≥ 2Γ

p
2 (0)

(p− 2)Γ′ (0)

1

T∗ − t
, ∀t ∈ [0, tmin), (3.69)

where tmin = min{T∗, T0,}, with T∗ =
2Γ (0)

(p− 2) Γ′ (0)
.

By 0 < β ≤ −pĒ(0)

p− 1
, τ >

2Ψ (0)

β(p− 2)
and T0 ≥

βτ2

(p− 2)βτ − 2Ψ (0)
, we get

T∗ =
2Γ (0)

(p− 2) Γ′ (0)
=

2T0Ψ(0) + βτ2

(p− 2)βτ
∈ (0, T0] . (3.70)

Because (3.69), it gives lim
t→T−

∗

Γ (t) = +∞. This is a contradiction.

Consequently, the solution (u, v) blows up at finite time.

Now, we find a upper bound for T∞.

It is clear to see that T∞ ≤ 2T∞Ψ(0) + βτ2

(p− 2)βτ
, it is equivalent to

T∞ ≤ βτ2

(p− 2)βτ − 2Ψ (0)
, ∀ (β, τ) ∈ D̃ (ũ0, ṽ0) , (3.71)

in which

D̃ (ũ0, ṽ0) =

{
(β, τ) ∈ R2

+ : 0 < β ≤ −pĒ (0)

p− 1
, τ >

2Ψ (0)

β(p− 2)

}
. (3.72)

Consider the function H(τ, β) =
βτ2

(p− 2)βτ − 2Ψ (0)
=

τ2

(p− 2)(τ − τ∗)
, (β, τ) ∈ D̃ (ũ0, ṽ0) , with

τ∗ =
2Ψ (0)

β(p− 2)
.

Fixed β, 0 < β ≤ −pĒ (0)

p− 1
. We have

∂H

∂τ
(τ, β) =

τ (τ − 2τ∗)

(p− 2) (τ − τ∗)
2 , ∀τ > τ∗, this implies that the

function τ 7−→ H(τ, β) is decreasing in (τ∗, 2τ∗) , and increasing in (2τ∗,+∞) , so

H(τ, β) ≥ H(2τ∗, β) =
4τ∗
p− 2

=
8Ψ (0)

β(p− 2)2
(3.73)

≥ 8Ψ (0)

−pĒ (0)

p− 1
(p− 2)2

=
−8(p− 1)Ψ (0)

p(p− 2)2Ē(0)
= Tmax

∞ , ∀(β, τ) ∈ D̃ (ũ0, ṽ0) .

From (3.71) and (3.73), it leads to T∞ ≤ −8(p− 1)Ψ (0)

p(p− 2)2Ē(0)
= Tmax

∞ . Hence, (3.52) holds.
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Next, we seek a lower bound for the blow-up time T∞. We have

Ψ′(t) = −ā(t;u(t), u(t))−
∥∥∥√µ2(t)vx(t)

∥∥∥2 + ∫ t

0
g(t− s)⟨vx(s), vx(t)⟩ds (3.74)

+ ⟨f1(u(t), v(t)), u(t)⟩+ ⟨f2(u(t), v(t)), v(t)⟩.

The terms on the right hand side of (3.74) are also estimated as follows∫ t

0
g(t− s)⟨vx(s), vx(t)⟩ds ≤

1

2
(g ∗ v)(t) + 3

2
ḡ(t) ∥vx(t)∥2 , (3.75)

⟨f1(u(t), v(t)), u(t)⟩+ ⟨f2(u(t), v(t)), v(t)⟩ ≤ d2F(t), (3.76)

∥u(t)∥2a + ∥vx(t)∥2 ≤
2

λ∗
Ψ(t), with λ∗ = min{λ1, λ2}, (3.77)

F(t) ≤ d̄2

N∑
i=1

(
∥u(t)∥qiLqi + ∥v(t)∥q̄i

Lq̄i

)
≤ d3

N∑
i=1

[
(Ψ(t))qi/2 + (Ψ(t))q̄i/2

]
, (3.78)

in which d3 = d̄2max

{(
2

λ∗

)qi/2

,

(
2

λ∗

)q̄i/2

, i = 1, · · · , N

}
.

On the other hand

Ē(t) + F(t)− 1

2
ā(t;u(t), u(t))− 1

2

(∥∥∥√µ2(t)vx(t)
∥∥∥2 − ḡ(t) ∥vx(t)∥2

)
=

1

2
(g ∗ v)(t). (3.79)

Combining (3.50), (3.74)-(3.80), it gives

Ψ′(t) ≤ G1 (Ψ(t)) , (3.80)

where G1 (z) is defined as in (3.53).
By (3.80), it leads to

t ≥
∫ t

0

Ψ′(s)ds

G1 (Ψ(s))
=

∫ Ψ(t)

Ψ(0)

dz

G1 (z)
. (3.81)

Therefore, we derive the lower bound for T∞ as follows

T∞ ≥
∫ ∞

Ψ(0)

dz

G1 (z)
= Tmin

∞ . (3.82)

Theorem 3.13 is proved completely.
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