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ABSTRACT

In this paper, we establish compactness and continuous dependence on pa-

rameters for solution-set of the second order differential inclusion including

self-adjoint operator in the form
∂2

∂t2
u(t, x) + 2A ∂

∂t
u(t, x) +A2u(t, x) ∈ F (t, u(t), µ), (t, x) ∈ [0, T )× Ω

u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ Ω,

where A is a self-adjoint operator. We use the spectral theory on Hilbert

spaces to obtain formulation for mild solutions. Using the mild solution

formula together with a measure of noncompactness with values in an or-

dered space, we construct useful bounds for solution operators. Then, we

establish necessarily upper semi-continuous and condensing settings, which

mainly help to obtain the global existence of mild solutions and the compact-

ness of the mild solution set. Finally, we provide a brief discussion on the

continuous dependence of the solution-set on parameter µ.

Keywords: multi-function, measure of compactness, differential inclusion,

Self-Adjoint operator
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1 Introduction

Let Ω be a bounded domain with sufficiently smooth boundary ∂Ω in Euclidean

space RN and T be a positive number. We first consider the following initial value

problem
∂2

∂t2
u(t, x) + 2A ∂

∂t
u(t, x) +A2u(t, x) ∈ F (t, u(t)), (t, x) ∈ [0, T )× Ω,

u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ Ω,

(1.1)

where ∂
∂t

and ∂2

∂t2
denote the symbols for the first and second-order derivatives with

respect to the variable t, respectively; A is a self-adjoint operator on the Hilbert

space H, namely, ⟨Aju,w⟩ = ⟨u,Ajw⟩ for all j ∈ {1, 2}; and F is a multi-valued

mapping which is called source function.

Differential equations and inclusions have recently received a lot of interest due

to their numerous applications in economics, control theory, physics, and other fields

(see e.g. [3, 7, 11, 18, 19]). There have been numerous studies on the existence and

the stability of the solution of the problem with the source single-valued function or

with non-integer order derivatives, in the literature [1, 2, 5–17].

In 2016, Anh et al. [1], studied the following fractional differential equation with

a multi-valued source function

∂α
t x(t)− Ax(t) ∈ F (t, x, xt), t ∈ (0,∞), α ∈ (0, 1), (1.2)

involving impulsive effects. They demonstrated the global solvability and weakly

asymptotic stability of solutions by examining their behavior on the half-line. This

equation was also studied in [5]. Phong and Lan (see [12]) are interested in the

retarded fractional evolution equation

∂α
t u(t)− Au(t) ∈ F (t, ut), t ∈ (0,∞), α ∈ (0, 1), (1.3)

under the condition

u(s) = φ(s), s ∈ [−h, 0], h > 0,

where A is a closed linear mapping in a Banach space E, F is a multi-valued mapping

and φ is the history of the solutions. When F super-linear, they proved the existence

of decay global-solution. However, a recurrent issue in control theory is that F is

a multi-valued mapping. Aside from the presence and continuity of the solution
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set, the compactness of the solution set is frequently of relevance. When the input

data F is noisy due to a parameter, we must evaluate the solution set’s continuous

dependency on the parameter.

In [10], Ngoc and Tri investigated the existence and compactness of the solution-

set to the following fractional pseudo-parabolic equation:
∂α
t w + κ(−∆)γ1∂α

t w + (−∆)γ2w ∈ F (t, u), t ∈ (0, T ), x ∈ Ω,
w(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,
w(0, x) = φ(x), x ∈ Ω,

(1.4)

where ∂α
t denotes the Caputo derivative of fractional order α ∈ (0, 1) over time.

Using asymptotic behaviors of the Mittag-Leffler functions, the authors constructed

useful bounds for the solution-set to prove the compactness and continuous depen-

dence on parameters of solutions-set of equation (1.4).

In [16], Tuan provided a regularized problem for bi-parabolic equation when the

observed data are obtained in Lp ( p ̸= 2){
utt(x, t) + 2∆ut(x, t) + ∆2u(x, t) = F (x, t, u(x, t)), in Ω× (0, T ],

u|∂Ω = ∆u|∂Ω = 0,
(1.5)

where utt =
∂2u
∂t2

, ut =
∂u
∂t

and F is a single-valued function, in particular, F (t, x) =

φ(t)f(x) and Tuan introduced the error between the Fourier regularized solution

and the exact solution in Lp spaces.

The goal of this research is to investigate the initial value problem for differential

inclusions (1.1). We demonstrate the existence and compactness of the solution set

and describe how the solutions to the following parameterized problems rely on

the parameter µ in a metric space (E, d). It is more obvious that we consider the

following equation
∂2

∂t2
u(t, x) + 2A ∂

∂t
u(t, x) +A2u(t, x) ∈ F (t, u(t, x), µ), (t, x) ∈ (0, T ]× Ω

u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ Ω,

(1.6)

In addition to widely utilized approaches such as Fourier expansion of an element

in Hilbert space evaluations, Gronwall’s inequality. we use a measure of noncompact-

ness β in the ordered space generated by a convex cone to consider the existence of

fixed points of the β-condensing multi-map. To the extent of our knowledge, There

are few works on differential inclusions using self-adjoint operators of fractional or-

der and methodologies based on the noncompactness measure that takes values in

cones.
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Let H be a Hilbert space, we denote by KV (H) (resp., b(H)) the all convex

and compact (resp., bounded) subsets of H and consider problem (1.1) with the

multi-valued function F : [0, T ]×H → KV (H) under the following conditions (H):

(Ha) for v ∈ H, there is a measurable function fv(.) : [0, T ] → H satisfying fv(t) ∈
F (t, v);

(Hb) F (t, .) : H → KV (H) is upper semicontinuous (usc, brief) for a.e. t ∈ [0, T ];

(Hc) there exists a function α ∈ L1((0, T );R) such that

∥|F (t, u)|∥ := sup
v∈F (t,u)

∥v∥H ≤ α(t)(1 + ∥u∥H) for a.e. t ∈ (0, T ) and ∀u ∈ H;

(Hd) there is B ∈ L1((0, T );R) satisfying

β(F (t,D)) ≤ B(t)β(D) for a.e. t ∈ (0, T ) for all D ∈ b(H),

where β is noncompactness measure in H that is defined by β(D) = inf{ε >

0 : D has a finite ε-net}.

Our work will be displayed as follows. In the following part, we will review some

fundamental characteristics of multi-valued analysis. Section 3 discusses the global

existence of mild solutions as well as the compactness of the solution set for the

problem (1.1). Finally, we talk about the continuous dependence parameters µ of

the solution set (1.6).

2 Preliminaries

We begin by describing some of the notations used throughout this paper. Let
�
N = N\{0} and P(X) (b(X), k(X), resp.) be the all nonempty (bounded, compact,

resp.) subsets of X. Let H be a separable Hilbert space equipped with an inner

product ⟨, ·, ·⟩ and the norm ∥ · ∥H = ⟨, ·, ·⟩ 1
2 . The space of all continuous maps from

[0, T ] into H is denoted by C([0, T ];H). The norm in C([0, T ],H) is defined by

∥u∥C([0,T ],H) = sup
t∈[0,T ]

∥u(t, .)∥H.

Let (X, ρ) be a metric space and G be a subset ofX. We denote the distance between

a point x ∈ X and G by dist(x,G) := inf{ρ(x, y) : y ∈ G}, and the ε-neighbourhood

of G by Lε,ρ(G) := {y ∈ X : dist(y,G) < ε} (in short, Lε(G)).
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To establish our primary findings, we require certain basic multi-valued analytical

features, which may be found in [4]. Let us review the concepts and attributes that

will be used in the subsequent sections.

Definition 2.1. [4, Definition 2.1.1] Let E be a Banach space and (C,⪯) a partially

ordered set. A map ϕ : Y ⊂ P(E) → C is said to be a measure of noncompactness

(MNC) in Y if ϕ(co(D)) = ϕ(D) for all D ∈ Y . A multi-mapping F : E → Y is

called condensing to ϕ (in short, ϕ-condensing) if D ∈ Y with ϕ(D) ⪯ ϕ(F (D)) then

D is relatively compact in E.

Let G be a subset of a metric space (E, d) and ϵ be a positive number. A

subset A of E is said to be ϵ-net of G if G ⊂
⋃
x∈A

{y ∈ E : d(x, y) < ϵ}. If A is

finite, A is called a finite ϵ-net. We need the Hausdorff measure β which defined

in [4, Definition 2.1.1], i.e., β(G) = inf{ϵ > 0 : G has a finite ϵ-net}.

Lemma 2.2. [4, Definition 2.1.1] Let E be a Banach space and β a Hausdorff MNC

defined on family F of subsets of E. Then β has the following properties:

(a) monotone: if D1 ⊂ D2 implies β(D1) ≤ β(D2), for all D1, D2 ∈ F .

(b) algebraically semiadditive: if β(D1 +D2) ≤ β(D1) + β(D2) for all D1, D2 ∈ F .

(c) nonsingular: if β({a} ∪D) = β(D) for all a ∈ E,D ∈ F .

(d) regular: β(D) = 0 if and only if D is relatively compact, D ∈ F .

(e) semi-homogeneity: that is β(λD) = |λ|β(D) for all λ ∈ R, D ∈ F .

Definition 2.3. [4, Corollary 1.1.1] Let X and Y be topological spaces. A multi-

valued mapping F : X → P(Y ) is upper semicontinuous at the point u ∈ X if,

for every open set W ⊂ Y such that F (x) ⊂ W , there exists a neighborhood V (x)

of u with property that F (V (u)) ⊂ W . A multi-value mapping is called upper

semicontinuous (usc) if it is upper continuous at every point u ∈ X.

Let (E, d), (F, ρ) be metric spaces, it is clear that a multi-valued mapping f form

a metric space (E, d) into (F, ρ) is usc at point x ∈ E iff for any ϵ > 0, there exists

δ > 0 such that f(ν) ⊂ Lϵ,ρ(f(x)) for all ν ∈ Lδ,d(x).

For multi-valued mapping Φ : E → P(E), we denote by Fix(Φ) the set of the all

fixed points of M, i.e., Fix(Φ) = {x ∈ E : x ∈ Φ(x)}.
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Lemma 2.4. [4, Corollary 3.3.1] If D is a closed convex subset of Banach space E

and Φ : D → KV (D) is a closed φ-condensing multi-valued mapping, where φ is a

nonsingular MNC defined on subsets of D, then Fix(Φ) is nonempty.

Lemma 2.5. [4, Propositions 3.5.1] Let D be a closed subset of a Banach space E

and Φ : D → k(D) a closed multi-valued mapping, which is ϕ-condensing on every

bounded subset of D, where ϕ is a monotone MNC. If Fix(Φ) is bounded then it is

compact.

Lemma 2.6. [4, Propositions 3.5.2] Let X be a closed subset of a Banach space

E, β be a monotone MNC in E, Y be a metric space, and G : Y × X → k(E)

be a closed multi-valued mapping which is β-condensing in the second variable and

such that F (λ) := FixG(λ, ·) ̸= ∅, for all λ ∈ Y. Then the multi-valued mapping

F : Y → P(E) is usc.

Definition 2.7. ( [4, Definition 4.2.1]) A sequence {xn}n∈N ⊂ L1([0, d], E) (E is a

Banach space ) is called

1. integrably bounded if there is q ∈ L1([0, d],R) such that

∥xn(t)∥E ≤ q(t) for a.e t ∈ [0, d] ∀n ∈ N;

2. semicompact if it is integrably bounded and the set {xn(t)}n∈N is relatively com-

pact for a.e t ∈ [0, d].

In addition to the above mentioned basic properties of multi-valued analysis, we

also use the Gronwall’s inequality presented in the following lemma.

Lemma 2.8. (Gronwall) Let a ∈ (0,∞), 0 < T ≤ ∞, and continuous functions

α, β : [0, T ] → R+ satisfying
∫ T

0
β(s)ds < ∞, and supt∈[0,T ] β(t) < ∞, 0 ≤ γ ≤ ξ ≤

T , and

β(t) ≤ a+

∫ T

t

α(s)β(s)ds

(
resp., β(t) ≤ a+

∫ t

0

α(s)µ(s)ds

)
, t ∈ [0, T ].

Then β(t) ≤ ae
∫ ξ
t α(s)ds

(
resp., β(t) ≤ ae

∫ t
γ α(s)ds

)
for all t ∈ [0, T ].

3 Main results

In the first part, we introduce the mild solution for problem (1.1). In the next part,

we prove the existence and compactness of the solution-set. In the final part, we

explore the parameter’s continuous dependence on the solution-set of the problem

(1.6).
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3.1 Mild solution

For every u ∈ C([0, T ];H), we denote

SF (u) =
{
f ∈ L1((0, T );H)|f(t, .) ∈ F (t, u), for a.e. t ∈ (0, T )

}
. (3.1)

It is clear that u = u(t, .) is a solution of Problem (1.1) if and only if there exists

f ∈ SF (u) satisfying
∂2

∂t2
u(t, x) + 2A ∂

∂t
u(t, x) +A2u(t, x) = f(t, x), (t, x) ∈ (0, T ]× Ω

u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ Ω.

(3.2)

Assume that ϕλ ∈ H is the eigen-function corresponding to the eigenvalue λ of the

operator A. Taking the inner product of both sides of (3.2) with ϕλ we obtain that

d2

dt2
⟨u(t), ϕλ⟩+ 2λ

d

dt
⟨u(t), ϕλ⟩+ λ2⟨u(t), ϕλ⟩ = ⟨f(t), ϕλ⟩. (3.3)

By the method of constant variation, from (3.3) it follows that

⟨u(t), ϕλ⟩ =
∫ t

0

(t− s)⟨f(s), ϕλ⟩e−λ(t−s)ds. (3.4)

Throughout this paper, let ϕn, n ∈
�
N, be the eigenfunction corresponding to the

eigenvalues λn satisfying 0 < λ1 < λ2 < ..., and limn→∞ λn = ∞. Furthermore,

assume that {ϕn}
n∈

�
N
is an orthonormal basis of H. If Problem (3.2) has a solution

u ∈ C([0, T ],H), then

u(t) =
∞∑
n=1

∫ t

0

(t− s)⟨f(s), ϕn⟩ϕne
−λn(t−s)ds. (3.5)

This suggests to define the mild solution of the problem (1.1) as follows:

Definition 3.1. A mapping x ∈ C([0, T ];H) is called a mild solution of Problem

(1.1) if following conditions hold

(i) x(0, ·) = ∂
∂t
x(0, ·) = 0, and

(ii) there is f ∈ SF (u) such that

x(t, .) =
∞∑
n=1

∫ t

0

(t− s)⟨f(s), ϕn⟩ϕn(.)e
−λn(t−s)ds for all t ∈ [0, T ]. (3.6)

Since f ∈ L1((0, T );H), it is clear that (3.6) is well defined and x(t, .) ∈ H for

a.e t ∈ [0, T ].
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3.2 Upper semicontinuous and condensing settings

For g ∈ L1((0, T );H) we define

Φ(g)(t, .) =
∞∑
n=1

∫ t

0

(t− s)⟨g(s), ϕn⟩ϕn(.)e
−λn(t−s)ds. (3.7)

It is clear that Φ is well defined. In this subsection, we establish the usc and β-

condensing properties of the multi-valued mapping Φ ◦ SF .

Lemma 3.2. Let {fn} ⊂ L1((0, T );H) be a semicompact sequence. Then,

a) the set {Φ(fn) : n ∈
�
N} is equicontinuous.

b) the set {Φ(fn) : n ∈
�
N} is relatively compact in C([0, T ];H) and Φ(fn) → Φ(f0)

if {fn} weakly converges to f0.

Proof. We first begin with proving the assertion a). Assume that t, t′ ∈ [0, T ]

satisfying 0 ≤ t < t′ ≤ T . We write

Φ(fn)(t)− Φ(fn)(t
′) =

∞∑
j=1

Rj(n)(t)−
∞∑
j=1

Rj(n)(t
′), (3.8)

here

Rj(n)(t) =

∫ t

0

αn(t, s, j)ds, αn(t, s, j) = (t− s)⟨fn(s), ϕj⟩ϕje
−λj(t−s).

Then, we get

Rj(n)(t)−Rj(n)(t
′) =

∫ t

0

(αn(t, s, j)− αn(t
′, s, j)) ds−

∫ t′

t

αn(t
′, s, j)ds. (3.9)

Using the mean value theorem for function t 7→ (t− s)e−λj(t−s), we obtain

(t−s)e−λj(t−s)−(t′−s)e−λj(t
′−s) = (1−λj(ξj−s))e−λj(ξj−s)(t−t′) for some ξj ∈ (t, t′).

Therefore, from the condition 0 ≤ s ≤ t < ξj ≤ t′ ≤ T it implies that the set

{µj : j = 1, 2, ...}, here µj = (1− λj(ξj − s))2e−2λ(ξj−s), is bounded. Hence,∥∥∥∥∥
∞∑
j=1

(αn(t, s, j)− αn(t
′, s, j))

∥∥∥∥∥
2

H

=
∞∑
j=1

(1− λj(ξj − s))2⟨fn(s), ϕj⟩2e−2λj(ξj−s)|t′ − t|2

≤ C1

∞∑
j=1

⟨fn(s), ϕj⟩2|t′ − t|2

= C1∥fn(s)∥2H|t′ − t|2. (3.10)
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Further, we have ∥∥∥∥∥
∞∑
j=1

αn(t
′, s, j)

∥∥∥∥∥
2

H

=
∞∑
j=1

(t− s)2⟨fn(s), ϕj⟩2

≤ C2

∞∑
j=1

⟨fn(s), ϕj⟩2

= C2∥fn(s)∥2H. (3.11)

Combination of (3.11), (3.10), (3.9) and (3.8) it show that

∥Φ(fn)(t)− Φ(fn)(t
′)∥H ≤

√
C2

∫ t′

t

∥fn(s)∥Hds+
√

C1

∫ t

0

∥fn(s)∥Hds|t′ − t|

(3.12)

Since the sequence {fn} is integrably bounded, there exists α ∈ L1([0, T ],R) such

that ∥fn(s)∥H ≤ α(s) for a.e s ∈ [0, T ] and for all n ∈
�
N. From (3.12) we evaluate

∥Φ(fn)(t)− Φ(fn)(t
′)∥H ≤ C|t′ − t| for all n = 1, 2, ... (3.13)

This deduce the assertion a).

b) e will prove the set {Φ(fn) : n ∈
�
N} is bounded at any point t ∈ [0, T ]. Indeed,

for every t ∈ [0, T ], since {fn} is integrally bounded we get

∥Φ(fn)(t)∥H ≤ C0

∫ T

0

∥fn(s)∥Hds

≤ C0

∫ T

0

α(s)ds = C ∀n ∈
�
N. (3.14)

By Arzela-Ascoli theorem, it implies that {Φ(fn) : n ∈
�
N} is relative compact in

C([0, T ],H). The second assertion b) is a consequence of the first assertion with the

note that Φ is bounded linear mapping from L1((0, T );H) to C([0, T ];H).

Using the upper semicontinuous assumption (Hb) of F and applying Mazur’s

theorem, we obtain the following lemma.

Lemma 3.3. Let {vn}
n∈

�
N

⊂ C([0, T ];H) and {fn}
∈

�
N

⊂ L1((0, T );H) satisfying

fn ∈ SF (vn) for all n ≥ 1. Then, if vn → v and {fn} weakly converges to f ,

f ∈ SF (v).

The closed property of the multioperator Φ ◦ SF which consequence of the use

Lemma 3.2 and Lemma 3.3.

9
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Lemma 3.4. Assume that the condition (H) is satisfied. Then Φ ◦ SF is closed

multioperators from L1((0, T );H) into C([0, T ],H).

Proof. We show the closed property of Φ◦SF . Assume that sequences {vn}n≥1 and

{zn}n≥1 in C([0, T ];H) satisfying

lim
n→∞

vn = v, zn ∈ Φ ◦ SF (vn) and lim
n→∞

zn = z.

We will prove that z ∈ Φ ◦ SF (v). Indeed, let {fn} be an arbitrary sequence in

L1((0, T );H) satisfying fn ∈ SF (vn) and zn = Φ(fn). From the condition (Hc) it

follows that {fn} is integrally bounded. Further, from the condition (Hd) it follows

that {fn} is semicompact and also weakly compact in L1((0, T );H) (see [4, Theorem

5.1.2]). Without loss of generality, we may assume that {fn} weakly converges to

f ∈ L1((0, T );H). Using Lemma 3.2, we get Φ(fn) → Φ(f) = z, so by Lemma 3.3

we deduce z ∈ Φ ◦ SF (v).

The following lemma is a consequence of Lemma 3.2 and Lemma 3.4.

Lemma 3.5. Assume the condition (H). Then, the multioperator Φ ◦ SF is usc.

Next, we present the condensing property of the multioperator Φ◦SF associated

with a suitable measure of noncompactness. Let D ⊂ C([0, T ],H), we denote by

∆(D) the family of all denumerable subsets of D. Let L be a positive constant, we

define

νL(D) = max
Q∈∆(D)

(
γL(Q); modC(Q)

)
,

where

γL(Q) = sup
t∈[0,T ]

eLtβ(Q(t)), modC(Q) = lim
δ→0

sup
v∈D

max
|t′−t|≤δ

∥v(t′)− v(t)∥,

Q(t) = {w(t) : w ∈ Q}. The MNC νL has the all properties which presented in

Lemma 2.2. The reader can find their proofs in [4, Example 2.1.4].

Lemma 3.6. Assume (H), SF : C([0, T ];H) → P(L1(0, T );H) defined by (3.1) and

Φ given by (3.7). Then, we can find L > 0 such that Φ ◦ SF is νL-condensing.

Proof. Let D be a bounded subset of C([0, T ];H) satisfying

νL(D) ⪯ νL(Φ ◦ SF ), (3.15)
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here the order ⪯ is taken in R2 induced by the positive cone R+ × R+. We will

prove that D is relatively compact. Let {vn} be any sequence in D, we set gn(t, .) =

Φ(fn)(t, .) with fn ∈ SF (vn) and

νL({gn : n ≥ 1}) = (γL({gn : n ≥ 1});modC({gn : n ≥ 1})) ,

the number L will be determined later. We have

e−Ltβ({gn(t, .) : n ≥ 1})

= e−Ltβ

({
∞∑
j=1

(∫ t

0

(t− s)⟨fn(s), ϕj⟩e−λ(t−s)ds

)
ϕj(.) : n ≥ 1

})

≤ C0e
−Lt

∫ t

0

β ({fn(s) : n ≥ 1}) ds

≤ C1 sup
s∈[0,T ]

(
e−Lsβ({vn(s, .) : n ≥ 1})

) ∫ t

0

sγ1e−L(t−s)ds, (3.16)

where we have used β-regularity condition (Hd) in the last estimate. From the above

inequality we obtain

γL({gn : n ≥ 1}) ≤ C1

(
sup

ξ∈[0,T ]

∫ ξ

0

τ γ1e−L(ξ−τ)dτ

)
γL({vn : n ≥ 1}). (3.17)

Since

lim
L→∞

(
sup

ξ∈[0,T ]

∫ ξ

0

τ γe−L(ξ−τ)dτ

)
= 0, (γ > −1),

there exists L0 > 0 satisfying

sup
ξ∈[0,T ]

∫ ξ

0

τ γ1e−L(ξ−τ)dτ <
1

4C1

∀L ≥ L0. (3.18)

On the other hand, from (3.15) it implies γL0({gn : n ≥ 1}) ≥ γL0({vn : n ≥
1}). Hence, combining with (3.17) and (3.18) we get γL0({vn : n ≥ 1}) = 0. So

β({vn(t, .)}) = 0 for all t ∈ [0, T ]. From the conditions (Hc) and (Hd) it implies that

{fn} is semicompact. Applying Lemma 3.2 we deduce that {gn : n ≥ 1} is relatively

compact, so νL0(D) = (0, 0) (zero of R2). The proof is completed.

3.3 Existence and compactness

In this subsection, we shall establish the compact property of the mild solutions set,

denoted by S F
h [0, T ], of the inclusion (1.1).

11
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Theorem 3.7. Assume that F satistied the condition (H). Then, S F
h [0, T ] is a

nonempty and compact subset of C([0, T ];H).

Proof. We consider the multi-valued mapping M : C([0, T ];H) → P(C([0, T ];H))

defined by

M(u) := {v ∈ C([0, T ];H) : v(t, .) = Φ(f)(t, .), f ∈ SF (u)}

Choose C1 satisfying

∥Φ(f)(t)∥H ≤ C1

∫ t

0

∥f(s)∥Hds. (3.19)

and L0 satisfying (3.18). Applying Lemma 3.5 and Lemma 3.6 we derive that M is

usc and νL0-condensing. We define the weighted space

CL0([0, T ];H) =
{
v ∈ C([0, T ];H) : ∃K > 0, ∥v(t, .)∥H ≤ KeL0t ∀t ∈ [0, T ]

}
,

endowed with norm

∥v∥CL0
([0,T ];H) = sup

t∈[0,T ]

e−L0t∥v(t, ·)∥H ∀v ∈ CL0([0, T ];H).

In the space CL0([0, T ];H), we denote

B(r) = {x ∈ CL0([0, T ];H) : ∥x∥CL0
([0, T ],H) ≤ r}.

Choose r > (r + 1)/4. Let u ∈ B(r), f ∈ SF (u), v ∈ M(u). Using the condition

(Hc) we have

e−L0t∥v(t, .)∥H = e−L0t ∥Φ(f)(t, .)∥H

≤ C1

∫ t

0

e−L0(t−s)e−L0ssγ1 (1 + ∥u(s, .)∥H) ds

≤ C1

∫ t

0

sγ1(e−L0s + r)e−L0(t−s)ds

≤ C1

(
(1 + r)

∫ t

0

sγ1e−L0(t−s)ds

)
< r.

This implies v ∈ B(r). It follows that S F
h [0, T ] ̸= ∅ by applying Lemma 2.4. To

prove that S F
h [0, T ] is compact. This is argued similarly to the last part in the

proof of the previous theorem.

12
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3.4 Continuous dependence on parameters

In this part, we look at the relationship between the solution of the parameterized

equation (1.6) and a scalar µ in the metric space (E, d). We remind readers of the

equation for their convenience.
∂2

∂t2
u(t, x) + 2A ∂

∂t
u(t, x) +A2u(t, x) ∈ F (t, u(t), µ), (t, x) ∈ (0, T ]× Ω,

u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ Ω.

(3.20)

Fixed µ0 ∈ E, we consider the continuous of respectively mild solutions set, i.e, if µ

near enough µ0, the solution-set corresponding to µ is contained in neighbourhood

of the solution-sets corresponding to µ0.

We consider the continuous dependence on parameters under the assumptions

(Hµ).

Let F : [0, T ]×H×E → KV (H) be a mapping satisfying the following conditions:

Hµ(a) : The multi-valued mapping F (., u, µ) has a strongly measurable selection

for all (u, µ) ∈ H× E;

Hµ(b) : The multi-valued mapping F (t, ., .) : H × E → KV (H) is usc for a.e.

t ∈ [0, T ];

Hµ(c) : There is a function α ∈ L1((0, T );R) such that

∥|F (t, u, µ)|∥ := sup
v∈F (t,u,µ)

∥v∥H ≤ α(t)(1 + ∥u∥H) for a.e. t ∈ (0, T ),

for all u ∈ H, µ ∈ E.

Hµ(d) : There exists B ∈ L1((0, T );R) satisfying

β(F (t, G,E)) ≤ B(t)β(G) for a.e. t ∈ (0, T ) for all G ∈ b(H),

here β is MNC in H defined

β(G) = inf{ε > 0 : G has a finite ε-net}. (3.21)

For every (u, µ) ∈ C([0, T ];H)× E we denote

SF,µ(u) =
{
f ∈ L1((0, T );H)|f(t, .) ∈ F (t, u, µ), for a.e. t ∈ (0, T )

}
13



Thu Dau Mot University Journal of Science - Volume 4 - Issue 4-2022

For every µ ∈ E, similarly as Theorem 3.7 we also denote multioperator Mµ :

C([0, T ];H) → P(C([0, T ];H)) defined by

Mµ(u) := {v ∈ C([0, T ];H) : v(t, .) = Φ(f)(t, .), f ∈ SF,µ(u)} .

Denote by H F,µ
h the family of all local mild solutions of Problem (1.6), i.e. , u ∈

H F,µ
h iff there exist τ ∈ (0, T ] and u ∈ C([0, T ];H) such that for all τ ∈ [0, τ ] and

vτ = u|[0,τ ], it holds

vτ ∈ {w ∈ C([0, τ ];H) : w(t) = Φ(f)(t), f ∈ SF,µ(u)} ,

and H F,µ
h [0, T ] :=

{
v ∈ H F,µ

h : v ∈ Mµ(v)
}
, here

Mµ(u) := {v ∈ C([0, T ];H) : v(t) = Φ(f)(t), f ∈ SF,µ(u)} .

Theorem 3.8. Assume the condition (Hµ), the set H F,µ0

h [0, T ] is bounded for some

µ0 ∈ E and

H F,µ0

h [0, τ ] = H F,µ0

h [0, T ]|[0,τ) for all τ ∈ (0, T ]. (3.22)

Then, for every ϵ > 0, we can find δϵ > 0 satisfying

H F,µ
h [0, T ] ⊂ Lϵ

(
H F,µ0

h [0, T ]
)

for all λ ∈ Bδϵ(µ0).

Proof. Suppose r > 0 with ∥|H F,µ
h [0, T ]|∥ < r. We will first use the contraction

argument to prove the following statement: There exists δ > 0 such that µ ∈
Lδ(µ0) ⊂ E implies

∥|H F,µ
h (t)|∥ ≤ 3r for all t ∈ [0, T ]. (3.23)

Indeed, assume that (3.23) fails. Then, we can choose sequences {µn} ⊂ E, {tn} ⊂
[0, T ], {un} ⊂ C([0, T ];H), µn → µ0 such that wn ∈ Mµn(wn) and

dist
(
wn(tn),H

F,µ0

h (tn)
)
≥ 2r, dist

(
wn(t),H

F,µ0

h (t)
)
< 2r (3.24)

for all t ∈ [0, tn).

Denote t∗ = lim{tn} we will show that t∗ ∈ (0, T ]. Indeed, suppose t∗ = 0. Let us

have a look at a subsequence of {tn} converging to 0, we also denote this subsequebce
by {tn} for convenience. Since H F,µ0

h is bounded and from (3.22) it follows that

H F,µ0

h is compact, and so the distance between h and H F,µ0

h (tn) converges to 0. We

get

2r ≤ dist
(
wn(tn),H

F,µ0

h (tn)
)

≤ ∥wn(tn)− h∥H + dist
(
h,H F,µ0

h (tn)
)

≤

∥∥∥∥∥
∞∑
j=1

eµj(T−tn)⟨h, ϕj⟩ϕj − h

∥∥∥∥∥
H

+ ∥Φ(fn)(tn)∥H + dist
(
h,H F,µ0

h (tn)
)
, (3.25)

14
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here fn ∈ SF,µ0(wn) for all n ∈
�
N. When n → ∞ in (3.25) we obtain 2r ≤ 0. This

is a contradiction, we deduce t∗ > 0.

By the definition of t∗, we can find a number γ with 0 < γ < t∗ ≤ T such that

wn are defined on [0, t∗ − γ] for all n. We next show that for every wn, there is

τn ∈ [0, t∗ − γ] ⊊ [0, T ] satisfying

dist
(
wn(τn),H

F,µ0

h (τn)
)
≥ ϵ. (3.26)

For every n, let any t† ∈ [0, tn), by the compactness of H F,µ0

h we suppose that

∥wn(t)− w†(t)∥H < ϵ for some w† ∈ H F,µ0

h . We get

∥wn(t† + t)− w†(t† + t)∥H
≤ ∥wn(t† + t)− wn(t†)∥H + ∥w†(t† + t)− w†(t†)∥H + ∥wn(t†)− w†(t†)∥H.

By the same argument as in the proof of Lemma 3.2, we can select t is small enough

such that both ∥wn(t† + t) − wn(t†)∥H and ∥wn(t† + t) − wn(t†)∥H are less than ϵ
4
.

Therefore, ∥wn(t† + t)−w†(t† + t)∥H ≤ 3ϵ/2, this contradicts (3.24). Namely, (3.26)

is proved.

Now, by similar arguments as proving Lemma 3.6, we note that M∗ : E ×
C([0, t∗ − γ];H) → KV (C([0, t∗ − γ];H)), M∗(µ, u) = Mµ(u), is νL-condensing for

some L > 0. That ensures the relative compactness of {wn|[0,t∗−γ]}. Let us take

w∗ = limwn|[0,γ−t∗], which belongs to M∗(λ0, w∗) on [0, t∗ − γ]. So, by passing to

the limit in (3.26) we get

dist
(
w∗(t∗),H

F,µ0

h (t∗)
)
≥ ϵ.

Hence, the solution u∗ cannot be extended to the interval [0, T ], this contradicts

(3.22). We complete the proof by applying Lemma 2.6.
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