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ABSTRACT 

This study deals with comparing the stiffness design of geometrically nonlinear 

structures and linear structures using topology optimization. Bi-directional 

Evolutionary Structures Optimization (BESO) is used for the design process. The 

geometrically nonlinear behavior of the structures is analyzed using a total Lagrangian 

finite element formulation and the equilibrium is achieved by Newton-Raphson 

iterative scheme. The topology optimization of linear and nonlinear modeling is 

performed. The sensitivity of the objective function is found with the adjoint method 

and the optimization problem is solved using BESO’s update method. Objective 

function of complementary work is evaluated. A special technique, the continuation 

method, is applied to eliminate the instability of nonlinear structure optimization. 

ANSYS APDL is also used to do FEA of optimal topology to verify the effectiveness of 

geometrically nonlinear modelling. The results show that differences in stiffness of 

structures optimized using linear and nonlinear modelling are generally small but it 

can be large in some cases, especially structure highly involving buckling behaviour. 
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1. Introduction 

Topology optimization became one popular research subject in structure a few decades 

ago. It finds not only structure design but also compliant mechanism design to meet the 

best performance. The requirement for light-weight, low-cost and so on put topology 

optimization in a high position. And, most of the work done is based on linearity behavior 

which is not always valid for applications involving large deformation. That is the 

motivation of this research.  

https://ejs.tdmu.edu.vn/tdmadmin/index.php?m=author&t=edit&cid%5b%5d=138
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Most of work done in topology optimization is based on linear behavior, assuming that 

the structures with linear elastic materials undergo small displacement. Linear structures 

can cover a large range of structural design problems. However, in many cases required 

nonlinear solutions because of large deformation which energy absorption structures and 

compliant mechanisms can be counted. And it can be called a geometrically nonlinear 

structure. 

There have been several prior works that considered geometrical nonlinearity in topology 

optimization problems. It was introduced as a method for solving the topology 

optimization problems of geometrically nonlinear structures and compliant mechanisms 

(Brun & Tortorelli, 1998). The examples provided in the above-mentioned works were 

not able to clearly show a significant difference in the converged topologies or values of 

the objective function between linear and nonlinear modeling (Buhl, Pedersen & 

Sigmund, 1999). With the examples provided, it showed that in many cases, the solutions 

from the nonlinear modeling are only slightly different from the linear ones. However, if 

snap-through effects are involved in the problems, the difference could be significant. It 

proposed a microstructure-based design approach with a nonlinear FE formulation for the 

topology optimization of structures with geometrical non-linearity (Gea & Luo, 2001). It 

was considered topology optimization of non-linear compliant mechanisms represented 

with frame elements (Pedersen, Buhl & Sigmund, 2001). An element removal and 

reintroduction strategy for topology optimization problems with geometrical nonlinearity 

were proposed (Bruns & Tortorelli, 2003). A level set-based topology optimization 

method was developed for large deformation problems (Ha & Cho, 2008). BESO was 

applied for topology optimization of geometrically nonlinear structures under both force 

loading and displacement loading (Huang & Xie, 2008). 

 

2. Geometrically Nonlinear Structures Optimization Method 

All the methods for topology optimization used in this study are explained in detail here. 

Firstly, a typical optimization method called BESO is clarified. Secondly, it is very 

important to figure out the differences between geometrically linear analysis and 

geometrically nonlinear analysis. Based on that issue, the finite element method affecting 

the optimal topology using nonlinearity modelling is investigated (assuming that the 

structures undergo large displacement with small strain).  

2.1. Bi-directional topology optimization method 

The original BESO appears to search for the minimum material volume subject to given 

mean compliance or displacement. Topology optimization is often aimed at searching for 

the stiffest structure with a given volume of material. In BESO methods, a structure is 

optimized by removing and adding elements simultaneously. That is to say that, the 

element itself, rather than its associated physical or material parameters, is treated as the 

design variable (Huang & Xie, 2010). Thus, the optimization problem with the volume 

constraint is stated as 
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(2. 1) 

where F and u are the applied load and displacement vectors and C is known as the mean 

compliance. 
j

V  is the volume of an individual element and V* is the prescribed total 

structural volume N is the total number of elements in the analysis domain. The design 

variable 
j

x  represents the density of individual elements limiting between prescribed 
min

x

and 1. Notice that the material interpolation scheme (Bendsøe, 1989) has been applied. 

2.2. Structural nonlinearity 

2.2.1. Types of structural nonlinearity 

Three main nonlinear behaviours are boundary nonlinearity, material nonlinearity and 

geometrical nonlinearity.  

Boundary nonlinearity is caused by independent displacement on the external boundary 

condition. Contacts produce stresses and friction affected on changing in deformation.  

The elastic material can generate nonlinearity behavior. The generated equation is 

expressed as σ E(ε)ε= , in which Young’s Modulus is no more constant but proportional 

with strains. Elastoplastic, viscoelastic and viscoplastic can be included in nonlinear 

material behaviors. 

In addition, geometrical nonlinearity is generated by nonlinear relationships in kinematic 

quantities like strains and displacement. Large displacement, large rotation and large 

strain are the roots of geometrical nonlinearity. In the linear model, displacements are 

small so that the effect of geometrical changing can be ignored. But, when that change 

becomes bigger, it has to be counted on the global stiffness matrix.  

2.2.2. Incremental-iterative approach 

Using the accumulated displacement, the resistant force (F) is obtained and the 

unbalanced force
t t

( R F)− , which is the difference between the applied and the resistant 

forces, is determined. The iterative process at this load increment continues by calculating 

a new tangent stiffness matrix, finding the displacement and the unbalanced force (Figure 

). The equations used in the Newton-Raphson method can be stated as (Bathe, 2006). 

 t t (it 1) (it ) t t t t it 1

T

t t (it ) t t it 1 (it )

K u R F

u u u

+ − + + −

+ + −

 = −

 = + 
 

(2. 2) 

where Δt is a suitably chosen time increment and it denotes the iteration number of the 

Newton-Raphson procedure in each time increment. The initial conditions at the start of 

each time increment are: 
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Convergence is achieved when both the errors, measured as the Euclidean norms of the 

unbalanced forces and the residual displacements, are less than a minimum value. The 

complete equilibrium path can be traced by finding the subsequent solution points at 

higher load levels using the same approach. 

 
Figure 1. Illustration of incremental Newton-Raphson approach (Abdi, 2015). 

 

3. Results and discussion  

Two numerical examples are given to perform the optimization procedure. BESO is 

further developed to enable the topology optimization of geometrically nonlinear 

structures undergoing large deformation. This is archived using total Lagrangian FE 

formulation and an incremental iterative Newton-Raphson procedure to determine the 

equilibrium solution at every evolutionary iteration. For example, the continuation 

method and two-volume constraints are applied. The solutions for geometrically linear 

modelling and geometrically nonlinear modelling are compared, and the necessity of 

nonlinear modelling for the topology optimization of geometrically nonlinear structures 

is investigated. Final optimal topologies are analyzed by ANSYS APDL. 

3.1 Cantilever beam 

Not many structures, which need to be optimized for stiffness, undergo large 

displacements (Buhl, Pedersen & Sigmund, 1999). The first example considers designing 

the stiffness of a slender cantilever beam. The initial dimension of a cantilever beam is 

1*0.25*0.1m in length, width and thickness. Figure 2 shows the design domain of this 

example. It is constrained at one end and free at the other, which is subjected to a 

concentrated load in the middle. The covering volume of the final topology equals 50 

percent of the initial domain volume. Material is linear elastic with Young’s modulus E=3 

GPa and Poisson’s ratio υ 0.4= . Also, an updated penalty method is employed in the 

optimization process. BESO starts from the full design which is subdivided using a mesh 

of 80*20 four-node plane stress elements. The BESO’s parameters are: evolution rate 

ER=2 percent; rmin=75mm; convergence criterion: 0.1 percent. 
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Figure 2. Design domain and boundary conditions of the geometrically nonlinear 

cantilever beam 

 

Figure 2. Evolutionary history of complementary work and volume fraction using 

BESO’s update scheme and linear modelling subject to load case of 60 kN 

 

Figure 4. Evolutionary history of complementary work and volume fraction using 

BESO’s update scheme and nonlinear modelling subject to load case of 60 kN 
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Several observations can be drawn from all these processes. In some initial iterations, 

because the effect of ER, elemental densities are not classified clearly with BESO. that 

effect can be seen in topology. It is noticed that the “optimal” topologies obtained for 

linear modelling are symmetric. With nonlinear modelling, topology is not symmetric. 

The purpose of optimal design is that the displacement of topology is as small as possible. 

A comparison among four topologies is given in TABLE 1. Nonlinear displacement is 

the most important value which is supposed to minimize. 

TABLE 1. Comparison of the optimization results of linear and nonlinear modelling using 

MMA and BESO at load case of 60 kN. 

modelling Update 

scheme 

Objective 

value (J) 

Linear FEA 

displacement (m) 

Nonlinear FEA 

displacement (m) 

Computation 

time (s) 

iters 

Linear BESO 2327 -0.0778 -0.0776 25 83 

Nonlinear BESO 2279 -0.0763 -0.0758 2504 124 

For all the topologies both the complementary work and displacement (linear and nonlinear) 

are listed. Generally, there is not much difference in this case. Nonlinear modelling can give 

a bit better result compared with linear. The biggest error is lower than 0.5 percent. 

Because of the slightly lower complementary work of nonlinear modelling compared with 

linear, it could be argued that the difference is insufficient to justify the efficiency of 

nonlinear analysis. The next example, which can figure out the important role of nonlinear 

modelling essential, will be implemented.  

3.2 Clamped beam 

It can be seen that in the last example, the difference between linear and nonlinear modelling 

is less than 5 percent. In order to emphasize the differences between linear and nonlinear 

modelling, the example of the clamped beam which contains buckling behavior is given. 

In addition, one more structural optimization model is considered. Figure 5. Design domain 

and boundary condition of clamped beam problem subject to centre load show a beam 

clamped at both ends. Concentration force is applied to the centre point of the top edge. The 

full topology is 8 m long, 1 m in width and 0.1 m in thickness. The final topology covers 20 

percent of the volume. Material is linear elastic with Young’s modulus E=3 GPa and 

Poisson’s ratio υ 0.4= . Here, the updated penalty method is not employed in the 

optimization process. Volume constrains is 20 percent. BESO starts from the design which is 

subdivided using a mesh of 320*40 four-node plane stress elements. The BESO parameters 

are: evolution rate ER=2 percent; rmin= 75 mm; convergence criterion 0.1 percent. 

 

Figure 5. Design domain and boundary condition of clamped beam problem subject to 

centre load 



Ho Đuc Dung -Volume 4 - Issue 4-2022, p.40-51. 

 46 

 

Figure 6. Evolutionary histories of complementary work and volume fraction using 

BESO’s update scheme and linear modelling 

The main difference between linear and nonlinear topology is two horizontal beams along 

the top edge of the domain. With a small load, it may be effective to resist the 

displacement. It is easy to collapse with a bigger load. Figure6 and Error! Reference 

source not found.7 show the evolutions of complementary work and volume fraction of 

topologies.  

 

Figure 7. Evolutionary histories of complementary work and volume fraction using 

BESO’s update scheme and nonlinear modelling 

TABLE 2. Comparison of the optimization results of linear and nonlinear modelling 

using BESO 

Modelling Update 

scheme 

Objective 

value (J) 

Linear FEA 

displacement (m) 

Nonlinear FEA 

displacement (m) 

Computation 

time (s) 

iters 

Linear BESO 45072 -0.2254 buckling 2576 129 

Nonlinear BESO 38328 -0.2156 -0.1925 23184 42 
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Not like the last example, totally different designs are obtained from nonlinear topology 

design comparing with linear topology design. Complementary work, which is the 

objective function, for nonlinear designs is much lower than linear designs. It means that 

the topology obtained using nonlinear modelling has a higher stiffness at the design load. 

Nonlinear results with BESO consist of a triangle in the middle of the structure under 

compression. With linear results, it also includes two horizontal bars on the upper edge.  

The computational time required to obtain the nonlinear design is approximately seven 

hours. It is necessary in order to arrive at the optimal design. This cost of time is caused 

by a large number of elements and taking buckling behaviour into account. 

A topology optimization procedure for the stiffness design of structures undergoing 

geometrically nonlinear deformations has been proposed. In many cases, computational 

time-consuming in geometrically nonlinear modelling is a big issue compared with the 

difference in the objective function. But in some case like a clamped beam, the difference 

in objective value may be large.  

3.4 2D topology analysis using ANSYS APDL 

Geometrically linear FEA and geometrically nonlinear FEA are implemented by using 

ANSYS APDL. Because geometrically nonlinear FEA is more complicated than a linear 

one, it is necessary to evaluate the reliability of the FEA solution using Matlab code. One 

of the most popular commercial software chosen is ANSYS APDL. 

In order to evaluate solutions, all 

the character of the modelling in 

ANSYS APDL is set similarly to its 

modelling in Matlab code. Figure 8 

shows the procedure of optimal 

topology FEA using ANSYS 

APDL.  

 

Figure 8. The procedure of optimal topology FEA 

using ANSYS APDL 

The optimal topology of the cantilever beam is used as a test case to validate the developed 

ANSYS simulation. All the parameter is set similarly to the designed cantilever beam. The 

deflection of the beam is obtained from linear and nonlinear FEA using the developed 

ANSYS command and the results are compared with those obtained from analyzing the 

same problem using Matlab code. Figure .8 illustrates the optimal cantilever beam 

deflection using ANSYS FEA for both linear and nonlinear geometrical modelling.  

topology FEA using ANSYS APDL.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The procedure of optimal topology FEA using ANSYS APDL 

Save and display output data of 

ANSYS APDL 

Save the optimal design with void and 

solid elements. 

Use matlab to create ANSYS 

command, use elemental densities 

input to define Young’s modulus. 

Open ANSYS APDL and execute 

ANSYS command 
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TABLE 3. Comparison of the linear and nonlinear response of the optimal cantilever beam 

in Figure 9 using the Matlab FEA modelling and ANSYS FE modelling. 

 Linear 

modelling 

Nonlinear 

modelling 

Linear FEA Matlab FE 

modelling  

-0.0778 -0.0763 

ANSYS FE 

modelling  

-0.0778 -0.0763 

Nonlinear FEA Matlab FE 

modelling  

-0.0776 -0.0758 

ANSYS FE 

modelling  

-0.0777 -0.0759 

(a) 

(b) 

Figure 9. Illustration for the large deformation of cantilever beam subject to a designed 

load of 60 kN with (a) linear modelling with BESO’s update method; (b) nonlinear 

modelling with BESO’s update method 
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The is no difference in linear results. With nonlinear results, it can be seen the small gap. 

The error between FE modelling using ANSYS APDL and Matlab is lower than 1 percent. 

(a) 

 (b) 

Figure 10. Illustration for the large deformation of a clamped beam subject to a designed 

load of 400 kN with (a) linear modelling with BESO’s update method; (b) nonlinear 

modelling with BESO’s update method 
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TABLE 4. Comparison of the linear and nonlinear response of the optimal clamped beam 

in Figure  obtained from the Matlab FE modelling and ANSYS FE modelling 

 Linear 

modelling 

Nonlinear 

modelling 

BESO BESO 

Linear FEA Matlab FE 

modelling  

-0.2254 -0.2156 

ANSYS FE 

modelling  

-0.2254 -0.2156 

Nonlinear FEA Matlab FE 

modelling  

buckling -0.1925 

ANSYS FE 

modelling  

buckling -0.1934 

Because of the results for optimal topology in Figure 9(a), there is no result for nonlinear 

FEA. With others, the result from ANSYS APDL is similar to Matlab. The error is less 

than 2 percent. Thus, the approach introduced is reliable for the FEA of optimal 

topology. There are many special behaviors of nonlinear modelling like locking, 

buckling and so on.  

 

4. Conclusion 

In those implemented example with topology optimization, the stiffness of structure is 

reduced slower than volume. The topology optimization results achieved from linear and 

nonlinear modelling showed that, for the presented examples, the solutions achieved from 

the optimization using non-linear modeling have a higher performance than those with 

linear modeling. Although there is not a significant difference between the solutions 

achieved from linear and nonlinear modeling in the first example of this study, nonlinear 

modeling consumes much more computational time than linear modeling. It is almost 50 

times higher. The displacement of topologies using nonlinear modeling is lower than 3 

percent compared with linear modeling. The results from the second example case which 

involves buckling (snap-through) effects, showed the importance of implementing 

nonlinear modeling in large displacement problems. The topology using linear modeling 

goes buckling when the applied force is lower 17 percent of the design load. And, the 

topology using nonlinear modeling goes buckling when the applied force is higher 40 

percent than the design load. 

Nonlinear FEA using ANSYS APDL is necessary to evaluate optimal topology. And, it 

is possible to use ANSYS APDL to build a finite element modeling. the difference 

between ANSYS FEA results and Matlab FEA results is less than 1 percent. 
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