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Abstract 

In physics, the majority of natural events have been researched and described using 

differential equations, each having its own initial and boundary conditions. These 

differential equations contain a large number of fundamental constants   as well as 

other model parameters. They add to the equation's complexity and rounding 

errors, making the problem more difficult to solve. In this work, we provide a 

method for transforming these physics differential equations into dimensionless 

equations, which are significantly simpler. Nondimensionalization, by suitably 

substituting variables, is the process of removing some or all of the physical 

dimensions from an equation that contains physical quantities. Some benefits of 

these dimensionless equations include that they are simpler to identify when using 

well-known mathematical methods, need less time to compute, and do not round 

off errors. Through several examples we discuss, this method is useful not just in 

quantum mechanics but also in classical physics. 
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1. Introduction  

In the field of physics, the majority of natural phenomena have been studied and described using 

differential equations, each with unique initial and boundary conditions. Each term in those 

differential equations indicates a system attribute related to heat, mass, momentum transfer and etc. 

The same units are used for each term on both sides of the equations.  

Solving these differential equations sometimes require specialist knowledge to handle sophisticated 

algorithms due to their complexity, which is often too great for existing computers to handle. In 

addition, these differential equations include many fundamental constants such as the electronic mass 

e
m and charge e , the Plank constant h , and other model parameters. The intricacy of the equation 

and the rounding errors are increased by these fundamental constants, making the problem difficult 

to solve (Conejo, 2021; Fernández, 2020). 

If we can transform these differential equations into a dimensionless form, it will be much easier to 

solve them. By appropriately substituting variables, nondimensionalization refers to the partial or 

complete elimination of physical dimensions from an equation containing physical quantities. It is 

also understood in terms of meaning is the process of transforming an equation to a dimensionless 

form by rescaling its variables. When using this technique, problems involving measured units can 

be made simpler and more parameterized. It has a tight connection to dimensional analysis. Unlike 

SI units, these units relate to quantities that are inherent to the system. Nondimensionalization is not 

the same as converting extensive quantities in an equation to intensive quantities, since the latter 

procedure results in variables that still carry units. Characteristic properties of a system can also be 

recovered by nondimensionalization.  
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In the dimensionless forms, this has numerous advantages (Conejo, 2021, Fernández, 2020): 

• It is easier to recognize when to apply familiar mathermatical techniques. 

• The computation takes less time. 

• Prevent rounding off errors. 

We applied this technique for complex problems such as a two-dimensional exciton in a constant 

magnetic field (Hoang, 2016), a two-dimensional exciton screened by reduced dimensionality with 

the presence of a constant magnetic field (Nguyen, 2019), and orther problems (Le, 2017; Anh, 2018; 

Cao, 2019; Ly, 2023). 

Because of this, we demonstrate the method's benefits in this work along with important details 

regarding the desired physical outcome, and we also demonstrate how to construct dimensionless 

equations.  

In section 2 we discuss in the RLC circuit, hydrogen atom models and two-dimensional negatively 

charged exciton models are covered in sections 3 and 4, and we have utilized dimensionless forms to 

obtain numerically exact solutions for these models (Hoang, 2016; Nguyen; 2019, Ly; 2023). The 

main findings and conclusions are outlined in section 5. 

 

2. RLC circuit 

 

To illustrate how to convert differential equations into dimensionless differential equations we begin 

with a simple model, the RLC circuit. Consider a resistor  R, an inductor L, and a capacitor C 

connected in series as shown in the above figure. An AC generator provides a time-varying 

electromotive force to the circuit, given by ( ) 0
cost t  = (Chasnov, 2019). The equations for the 

voltage drop across a capacitor, a resistor, and an inductor are , , ,
C R L

q di
V V iR V L

C dt
= = =  where 

C is the capacitance, R is the resistance and L is the inductance. The charge q and the current i are 

related by .
dq

i
dt

=  

Kirchhoff’s voltage law states that the electromotive force applied to any closed loop is equal to the 

sum of the voltage drops in that loop. Appying Kirchhoff’s law, we have: 

 ( ) ,L R C
V V V t+ + =  (1) 

or 

 
2

02

1
cos

d q dq
L R q t

dt dt C
 + + =  (2) 

The equation (2) is a second-order linear inhomogeneous differential equation with constant 

coefficients. It has a lot of parameters in it, like R, L, C, ,  . To reduce the number of free parameters 

in the equation (2), we can nondimensionalize. We first define the natural frequency of oscillation of 

a system to be the frequency of oscillation in the absence of any driving or damping forces. For the 

RLC circuit, the natural frequency of oscillation is given by 
0

1

LC
 = , and making use of

0
 , we 

can define a dimensionless time  t and a dimensionless charge Q  by 
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2

0

0

0

,
L

t Q q


 


= =  (3) 

The resulting dimensionless equation for the RLC circuit can then be found to be 

 

2

2
cos ,

d Q dQ
Q t

d d
 

 
+ + =  (4) 

with 
0 0

,
R

L


 

 
= = . 

We have an RLC circuit, a simple electrical engineering circuit with an AC current, easy to recognize 

the form of the equation (4) is an inhomogeneous term to the second-order with constant coefficients. 

We learned how to solve these problems, so we totally can apply them to solve the equation (4). 

By redefining dimensionless variables, we end up with an equation without dimensions with fewer 

parameters, alpha and beta are constant and unit-less. We can solve the equation (4) more quickly and 

the computation takes less time.  

 

3. Hydrogen atom models 

Then the Schrödinger equation for hydrogen atom is found to be  

 ( ) ( ) ( )ˆ ,H r r E r =  (5) 

where the Hamiltonian is given by 

 ( )
2 2

2

0

ˆ ,
2 4

e

e
H r

m r
= −  −  (6) 

With the Schrödinger equation (5), our variables are , , ,x y z E  and constants are 
0

, , , ,
e

e m   . We 

realize that the relevant numbers that govern the character of physical phenomena are not dimensional 

variables ( )0
, , , ,

e
e m   , but rather, dimensionless numbers ( ), , ,x y z E . In the computational, the 

dimensional variables ( )0
, , , ,

e
e m   make the computational time become longer and exhibit round-

off errors. It will affect the accuracy of the calculation. So, we should remove them leaving a much 

simpler equation. 

To obtain a dimensionless Schrödinger equation, we first define dimensionless coordinate and 

dimensionless energy by: 

 , ,
r E

E
a b


 = =  (7) 

where a   and b   are corresponding a unit of length and energy that we choose conveniently for 

problem. 

To rewrite the equation (5) with variables , , ,x y z E  to variables , , ,
x y z

E


   , we transform: 

 

2 2

2 2 2

2 2

2 2

2 2 2 2

2 2

2 2 2

11

1 1 1

1 1

x

xx x

y

y y y

z

z z z

x ax x a

y y a y a a

z z a z a





 



  



  

     
== = 

     
      

= = → = →  =  
      

      
 = = =
      

 (8) 
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2 2 2 2 2 2

.
x y z

r x y z a a r


  = + + = + + =  (9) 

Replace (8), (9) into (5) we have 

 ( ) ( )
2 2

2

2 2

0

1 1
,

2 4

e e
m ae m a b

E
 

   
  

 
−  − = 
 

 (10) 

Continue, we choose 

 

22
0

22

0

22

2 2 22
0

4
1

4

1
16

e

e

ee

m ae
a

m e

m em a b
b

 

 

 


== 

 
→ 

  ==
  

 (11) 

We have the dimensionless Schrödinger as: 

 ( ) ( )21 1

2
E

 
   



 
−  − = 
 

 (12) 

With:  

• 

2

0

02

4

e

a a
e m


= =  is the unit of length ( 

0
a : the Bohr radius). 

• 

4 4

2 2 2 2 2

0 0

2
16 4

y

me me
b R

h  
= = =  is the unit of energy (

y
R : the Rydberg constant). 

We realize that the dimensionless Schrödinger (12) is a simplified version of the equation (5) and that 

the algebraic manipulation of the dimensionless equation and its numerical treatment are significantly 

less time-consuming. 

 

4. Two-dimensional negatively charged exciton models 

In this section, we focus on the two-dimensional negatively charged exciton. The bound complexes 

of electrons and holes were predicted by Lampert (Lampert, 1958). Charged excitons (or trions) are 

three-particle excitonic complexes resulting from the binding of an exciton (an electron-hole pair) 

with an extra electron or hole in semiconductors, in which the negatively charged exciton consists of 

two electrons bound to a hole.  

The Schrödinger equation of a negatively charged exciton is given by (Hoang, 2016; Nguyen, 2019; 

Ly, 2023) 

 ( ) ( ) ( )1 2 1 2
ˆ , , ,H r r r E r r =  (13) 

2 2 2 2 2 2 2 2

2 2

1 2* *

1 2 1 2 0 1 0 2 0 1 2

ˆ .
2 2 4 4 4

h

Z e Z e e
H

m x x y y r r r r    

 



  
= −  −  − + − − + 

    − 

 (14) 

Where 
* *
,

e h
m m  are the electron's effective mass and the hole's effective mass; 

*
Z  is the effective 

charge of the hole, 
0

 is the static dielectric constant; 
1 2
,r r  are the coordinates vectors of electrons 

and holes in two-dimensional respectively; the effective reduced mass
*

  is defined by the formula 
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* *

*

* *
.e h

h e

m m

m m
 =

+
 (15) 

To convert a dimensionless Schrödinger equation, we denoted: 

 
1 1 2 2

1 1 2 2, , , , ,
x y x y

x y x y E
E

a a a a b


   = = = = =  (16) 

here a   and b  are corresponding a unit of length and energy that we choose conveniently for the 

problem. 

We have: 

 

1

1 1 1

1

1 1 1

2 2

2 2 2

1 1 1

2 2

2 2 2

1 1 1

1 1

1 1

x

x x x

y

y y y

x x a x a

y y a y a



  



  

    
= =  =

     

    
= =  =

     

 

 

1 2

1 1 1 2

1 2 1 2

2 2 2 2

1 22 2

1 2 1 2

2 2 2 2

2 2

1 2 1 2

1 1
,

; ;

1 1
;

x x y y

a a

r a r r ar r r a r r

x x a y y a

 

   

   


 =   = 



 = = − = −


   
= =

        


 (17) 

Replace (17) into (13) we have 

 

( ) ( )

1 2

1 2 1 2

1 2 1 2

* 2 2

2 2

2 * 2 * 2 * * 2

1 2 1 22 2 2 2

0 0 0

1 1

2 2

1
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4 4 4

h x x y y
m

e a Z e a Z e a a b
E

r r r r

 



   



   

   
     

     



 

   
−  −  − +  

      


− − + =

− 


 (18) 

We choose 

 

22 *

0

* 22

0

* 2* 2

2 2 22
0

4
1

4

1
16

e a
a

e

ea b
b

 

 



 


== 

 
→ 

  ==
  

 (19) 

We have the dimensionless Schrödinger as: 

( ) ( )
1 2

1 2 1 2 1 2 1 2

* 2 2

2 2

1 2 1 2

1 1 1
, , .

2 2
h x x y y

Z Z
E

m r r r r
  

   


     

   

 



   
 −  −  − + − − + = 

     −   

 (20) 

With:  

• 

2

0

02 *

4
a a

e




= =  is the unit of length ( 

0
a : the Bohr radius). 
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• 
* 4 * 4

2 2 2 2 2

0 0

2
16 4

y

e e
b R

h

 

  
= = =  is the unit of energy (

y
R : the Rydberg constant). 

We demonstrate the conversion of the dimensionless Schrödinger simplier in the two-dimensional 

negatively charged exciton models, not only by choosing units such that 1m e c= = = =   or 

expressions of a similar nature (Fernández, 2020) but also by providing a method for doing so that 

can be used to solve a wide range of issues. Applying this method to a two-dimensional exciton in a 

constant magnetic field (Hoang, 2016; Nguyen, 2019; Ly, 2023) allowed us to optimize the 

computation process and minimize errors due to its dimensionless Schrödinger. 

 

5. Conclusion 

The work discusses the benefits of using dimensionless equations in physics, especially when solving 

problems with numerical methods. Dimensionless equations are simpler and less prone to rounding 

errors. The study also introduces a method for transforming dimensional equations into dimensionless 

ones. This method is applied to various examples, including the RLC circuit, hydrogen atom models, 

and two-dimensional negatively charged exciton models. This technique shows that these fundamental 

constants and other model parameters not only by choosing units such that  or expressions of a similar 

nature but also by providing a method for doing so that can be used to solve a wide range of issues. We 

applied this technique for more complex problems such as a two-dimensional exciton in a constant 

magnetic field, a two-dimensional exciton screened by reduced dimensionality with the presence of a 

constant magnetic field, and other problems. It is worth adding that dimensionless equations are a 

valuable tool for solving complex problems in physics, not just quantum mechanics. 
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