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Abstract 

The power system is increasingly expanding, especially with the increasing 

participation of distributed renewable energy power plants, increasing the level 

of instability when operating the power grid. This study proposes a solution to 

help improve the stability of the power system through preventive control based 

on dynamic security prediction results. The proposed method is implemented 

using Matlab software with a network model of 10 buses, 4 generators, and 

simulated input data according to IEEE standards. The data from the simulation 

results is fed into the fuzzy logic system to determine the optimal     grid operation 

plan. The results of this research help power grid operators come up with 

reasonable operating mechanisms to improve their ability to operate the power 

grid safely and stably. 
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1. Introduction  

The transmission of large capacity leads to the operating conditions of the transmission lines near to 

the working limit. As a result, power system (PS) become susceptible to turbulence and power outages 

that cause heavy damage (Andersson et al., 2005; Makarov et al., 2005). The urgency has become 

apparent when in recent years, power outages have severely affected the economy in many countries 

around the world (Furse et al., 2021). In recent years, due to the ability to quickly learn the input and 

output nonlinear relationships of the power system operating conditions, artificial neural networks 

(ANN) are an approach to evaluate the stability of the power system that has attracted many 

researchers' attention (Bento, 2024; Maraaba et al., 2023; Wazirali et al., 2023). Based on the steady 

state variables of the power system, it is possible to diagnose the operating state of the power system 

when a fault occurs. Then, preventive control will help protect the electrical system against 

unexpected factors that can cause power outages. The study was carried out on the power system of 

4 generator – 10 buses (Uravakonda et al., 2022) with support for simulation and calculation software 

Matlab R2014a. 

 

2. Research Methods 

2.1. Artificial Neural Network 

ANN learns the input and output data relationships to evaluate the power system state. The 

characteristic variables on the power system representing the transient modes include the change of 

the generating power, the change of the load power, the voltage drop at the busses, the variation of 

the distributed power on the transmission line. 

http://www.tdmujournal.vn/


Thu Dau Mot University Journal of Science  ISSN (print): 1859-4433, (online): 2615-9635 

www.tdmujournal.vn  Page 289 

The input data is classified into two steady/unstable states based on observing the relationship 

between the power angles of the generators on the power system. The output data represents whether 

the state of the power system is stable or unstable. 

2.2. DSP model building 

The process of building a DSP model is carried out in detail in Figure 1. 

2.2.1. Input data 

The input data is classified into two steady/unstable states based on observing the relationship 

between the power angles of the generators on the power system. The standards for evaluating 

stability are: 
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Figure 1. DSP model building process. 

The states that characterize the operating state of the system are called samples, each sample is 

represented as a vector consisting of a number of characteristic variables represented as follows (Vo 

Thanh An, 2016): 

[ , , ]
j bus load flow

Z V P P=    (2) 

Input data will be normalized before training and calculated according to formula (3). 
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With: xi, zi is the initial value, and the normalized value of the i, mi feature variable is the mean of the 

data, i  the standard variance of the data. 

2.2.2. Feature variable selection 

Select feature variables to eliminate irrelevant variables and/or redundant variables without affecting 

learning performance. There are many methods for selecting feature variables such as: Fisher distance 

function, Divergence distance function, Relief algorithm, etc. The article applies the Relief variable 

selection algorithm. (Phan Viet Thinh, 2015).  
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2.3.3. Training 

In order to train and test the diagnostic model objectively and generally, the training dataset is 

randomly divided into training data set (75%), test dataset (25%). 

The problem applies MLPNN (Multilayer Perceptron Neural Network) 3 layers with 1 input layer, 1 

hidden layer and 1 output layer (Zhang et al., 2021). In Matlab, the newff network function code is 

called according to the following syntax: net = newff(p,t,n); 

The output is normalized according to the law (4). If the output encoding {1} is stable, and {0} is 

unstable, then: 
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2.2.4. Assessment of recognition accuracy 

The percentage of the model's recognition accuracy in training or testing is averaged over k executions. 

The model's recognition accuracy was evaluated as percentage of correct training or correct test and 

determined by formula (5).      

R
%Correct Classification  =  x100% (6)

S

  (5) 

Where: R is the total number of correct samples, S is the total number of samples. 

2.3. Proposal of backup control (PDSC) 

The working space of the power system is a collection of stable and unstable working points. These 

work points are divided into two regions as illustrated in Figure 2. In which the symbol  represents 

the stable working points, the symbol  represents the unstable working points. When the working 

space of the power system falls into a stable area, if there is a problem, the power system will still 

maintain a stable state. On the contrary, at the unstable working point, if a problem occurs, it will 

cause instability of the power system. Through observation, when the working space of the power 

system falls into the point of instability, it is possible to control the movement of the working space 

of the power system to the stable area, which will ensure the safety of the power system if the power 

system is damaged. The control of the working point to the stable region can be based on the stored 

stability data set. For the archival sample, the stable working point scenario has been predetermined, 

so the execution is fast. 

 

Figure 2. Illustrate the working point of the power system 

2.3.1 Calculation area limit 

The load graph fuzzy algorithm is used to limit the calculation area to find a stable working point in 

the sample area with the same transmit power level as the unstable point.  

Membership function (x) : R→ [0,1] of the fuzzy number triangle  defined on R then:         
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Here: l and m are the best values of the fuzzy numbers M, l and u are the lower and upper bounds, 

respectively. According to Zadeh's extension principle for two fuzzy number triangles, Figure 3. 

~
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Figure 3. Competition model between 
~ ~

1 2,M M  

2.3.2. Find a representative sample of the PDSC strategy 

The problem of finding a stable working point has been limited to the sample area with the power 

level corresponding to the area of the original unstable working point. However, the number of stable 

samples corresponding to each power level is still large, so finding a stable working point takes a 

long time, which leads to a delay in making control decisions - PDSC. To solve the above problem, 

the method of reducing the sample is proposed. In this paper, the sample energy method is applied to 

divide the data into subgroups. 

The energy level of sample Ei is calculated according to the following expression: 

2 2 2

1 2
...

i n
E x x x= + + +   (8) 

After the energy levels for each sample were calculated, samples with similar energy levels were 

grouped together. Within each group, it is necessary to define a sample that is representative of the 

group. The representative sample is the group center or the sample with the average energy level of 

the group. For example in Figure 4, the dataset has 'm' samples divided into 2 groups, the average 

energy levels for the 2 groups are ED1 and ED2. Therefore, the dataset with 'm' samples is reduced to 

2 samples with energy levels ED1 and ED2. 

                                                      

Figure 4. Split data by energy level 
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The sample set is divided by energy level, so finding a stable working point will be based on the 

energy level of the data. Specifically, if the unstable working point has a power level in any group, 

the working point of the PS will be shifted to the representative sample in that group. 

 

3. Results – Discussion 

3.1. Input data 

The papper checks the accuracy of the model on a power system consisting of 4 generators - 10 buses 

(Gurrala & Sen, 2010; Uravakonda et al., 2022). The system consists of 4 generators, 4 transformers, 

6 transmission lines and 2 loads. Four transmitters are connected from bus 1 to bus 4 where bus 2 is 

considered as Slack bus, remaining 3 generator buses are PV bus, 6 non-generator connected buses 

are PQ bus. PS has 2 different voltage levels, 230kV and 20kV. The system is given as shown in 

Figure 5. 

The data is generated through off-line simulation on Matlab software, considering the balanced 3-

phase short circuit at the inter-regional line with load levels of 90%, 100%, 110% of base load, with 

time Short circuit setting is 3 cycles after the short circuit. As a result, the data sample set includes 

1845 stable samples and 1394 unstable samples, Data (1845,1394). The data is normalized before 

calculation according to formula (2). 

                                

Figure 5. Model of power system with 4 generators – 10 bus  

3.2. Feature variable selection 

Variables are represented as vectors [ , , ]
bus load flow

x V P P= . The total number of input variables is 22 

variables including 10 voltage variables at the busses, 2 load active power variables, 4 transmitter 

active power variables and 6 active power variables distributed on the transmission line. The results 

of the variable rank calculation of the Relief method are presented in Figure 6. 

-8

6

-4

0

10

-6

-2

 ×10-3

0 5 10 15 20 25

R
el

ie
f 

W
ei

gh
t

Feature

2

4

8

 

Figure 6. Variable Rank Relief Algorithm 
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Train by trial and error several times with different subsets of variables to find the best results. The 

percentage of diagnostic accuracy of the model in training or testing was averaged over 10 executions. 

The percentage of correct training or correct testing is determined by formula (4). The diagnostic 

accuracy for different variables is shown in Figure 7 and Table 1. 

                                       

Figure 7. Results of variable selection evaluation. 

From Figure 7 draw the results of evaluating the test accuracy of the model at the number of variables 

(nf) of 10 variables and 22 variables as shown in Table 1. 

TABLE 1. Evaluation results at 10 and 22 variables. 

Number of variables 10 22 

Train (%) 99.6 99.8 

Test (%) 99.4 99.7 

3.3. Control Model (PDSC) 

3.3.1 Limit the working area 

To simplify the calculation, perform load graph fuzzy as suggested above. In which the sample set is 

divided into 3 groups, each group has a power level that fluctuates within ±5% of the base load. The 

results of load graph fuzzification are presented in Table 2. Assuming the load is operating at 103% 

of base load, the results show μ2>μ3 so load level 2 is selected. The results of a stable sample set of 

1845 samples divided into 3 levels are presented in Table 2.  

 

Figure 8. Fuzzy load graph 

TABLE 2. Calculation results of load graph fuzzification 

Value % load Load levels Sample number 

85%-  95% Level 1 (90%)   720 

95%-105%   Level 2 (100%) 666 

105% - 115%   Level 3 (110%)    459 
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3.3.2 Find a representative sample of PDSC  strategy 

In order to reduce the computational volume, the problem uses the sample energy method to divide 

the data into groups. Applying the energy function for each load level, the energy of the data set is 

shown in the graph Figure 9. 

                             

Figure 9. Energy distribution of 3 load level 

The power at each load level after fuzzification of the load graph fluctuates within ±5% of the load 

level value. Based on this factor, the researcher divided the data set into two groups with the smallest, 

medium, and largest energy levels: group 1 (Emin ≤Ex  ≤ Eavg), group 2 ( Eavg < Ex ≤ Emax). A 

representative sample of the data group shall be a sample with a large transmit power level sufficient 

to cover the control cases. Therefore, the representative sample of the data group will be the high-

energy sample of the data group. Specifically, the results of grouping and selecting representative 

samples are presented in Table 3. 

TABLE 3. Stability data group by load levels 

Load levels Power level Sample 

number 

Energy level of representative 

sample 

Load level 1 

(90%) 

Group 1 6.76 ≤ Ei ≤ 19.4 645 19.4 MS1 

Group 2 19.4 < Ei ≤ 31.9 75 31.9 MS2 

Load level 2 

(100%) 

Group 3 5.5 ≤ Ei ≤ 14.4 604 14.4 MS3 

Group 4 14.4 < Ei ≤ 23.7 62 23.7 MS4 

Load level 3 

(110%) 

Group 5 6.9  ≤ Ei ≤ 14.0 412 14.0 MS5 

Group 6 14.0 < Ei ≤ 21.1 47 21.1 MS6 

After the process of blurring the load graph and finding a representative sample for the PDSC control 

strategy, the result of the stable sample set SS(1845) was reduced to 6 samples representing the 

control scenario. In order to facilitate the evaluation of PDSC control strategy, for each load level, it 

is proposed to select three unstable representative samples with energy levels (max, avg, min) or a 

total of 9 samples. represent. The energy levels of the samples are shown in Table 4. 

TABLE 4. Unstable Samples of 3 Load Levels 

Load levels Power level 

Load level 1 (90%) 

M1max 29.2 

M1avg 15.22 

M1min 6,63 

Load level 2 (100%) 

M2max 22.62 

M2avg 13.21 

M2min 5.1 

Load level 3 (110%) 

M3max 20.91 

M3avg 13.56 

M3min 6.81 
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Table 4 presents 9 unstable samples representing the joystick about 6 stable working points in Table 

3. The control calculation strategy is shown in Table 5 for 9 unstable samples. Figure 10 illustrates a 

case where the working point is unstable at Load Level 1 with the energy M1max of the power system 

being shifted to the stable point with the fault occurring.  

(b)(a)

 

Figure 10. Rotor deflection angle (a) when not controller, (b) when controller 

TABLE 5. Preventive control results 

Before the controller After controller 

Unstable working 

point 

Total active power  

(MW) 

Working point teleports to Total active power  

(MW) 

M1min 2546 MS1 2550 

M1avg 2571 2575 

M1max 2600 MS2 2630 

M2min 2656 MS3 2661 

M2avg 2784 2793 

M2max 2823 MS4 2830 

M3min 2868 MS5 2890 

M3avg 2946 2953 

M3max 2970 MS6 3018 

3.4. Discussion 

Table 1 and Figure 7, the number of input variables is 10, the test accuracy result is 99.4%. Compared 

with the original 22 variables, this result shows that the number of variables decreased by 54% while 

the accuracy decreased by only 0.3%. The paper applies sample energy and fuzzy law to limit the 

working area for preventive control. The results presented in Tables 4 and 5 show that with the initial 

unstable sample space of 1394 samples represented only 9 samples, 1845 stable samples represented 

only 6 samples. This has great significance in compacting the search for control space, reducing 

sample memory storage space. Figure 10 shows the effectiveness of applying the proposed control 

strategy to save the PS from being destabilized when the problem occurs. 

 

4. Conclusion 

The study proposed a preventive operating and control mode based on the results of dynamic security 

prediction for the power system. The simulation model and input data are taken from IEEE standard 

10 node-4 generators network parameters. The idea is based on sample energy and fuzzy rules to limit 

the stable working point of the electromagnetic system so that the operator can propose the optimal 

control mode. Testing with different load levels (90%, 100%, 110%) on the IEEE model shows that 
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the proposed control mode has the effect of continuously stable power system operation. Research 

results also show effectiveness in compacting sample memory storage space.  

This research helps power system operators come up with appropriate operating modes and predict 

the stability of the power system even when an incident occurs. 
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