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ABSTRACT
In this work, we study the problem of finding the source function of the inhomogeneous
diffusion equations with conformable derivative c∂α

t u−∆u = f(x), 0 < α < 1, associate
with random noisy input data. This problem is ill-posed in the sense of Hadamard. In
order to regulate the instablity of the solution, we applied the truncation method and
estimated the error estimate between the exact solution and the regularized solution.
Keywords: Diffusion equations, Regularization, Random noise, Finding source, Con-
formable derivative

1 Introduction

Let Ω be a bounded domain in Rd (d ≥ 1), with sufficiently smooth boundary ∂Ω. In this
article, for the equation

c∂α
t u(x, t)−∆u(x, t) = f(x), x ∈ Ω, t ∈ (0, T ) (1.1)

accompanied with boundary condition, the initial condition and the terminal condition
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = ρ(x), x ∈ Ω,

u(x, T ) = ξ(x), x ∈ Ω.

Our goal here is recovering the source f(x). The derivative with respect to the time variable
c∂α

t is in the sense of Conformable derivative with order α ∈ (0, 1) (see [1]).

Definition 1.1 (Conformable derivative). Given a function u : [0,∞) → R, the Conformable
fractional of order α ∈ (0, 1] is defined by

c∂α
t u(t) = lim

ϵ→0

u(t+ ϵt1−α)− u(t)

ϵ
, (1.2)
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for all t > 0. If f is α differentiable in (0, a), a > 0, and the limt→t+0

c∂α
t u(t) exists, then

c∂α
t u(t0) = lim

t→t+0

c∂α
t u(t).

Proposition 1.2 ( [1]). If a function u : (a,∞) → R is differentiable at a point t > 0, then

∂α
t u = t1−αdu

dt
, α ∈ (0, 1). (1.3)

Fractional diffusion equations there are many applications: In Electrochemistry, they are
used to model the diffusion of ions in electrolytes. The fractional derivative accounts for the non-
local interactions between the ions, which are not captured by the classical diffusion equation;
In Image processing they are used to enhance images by removing noise and preserving edges.
The fractional derivative acts as a low-pass filter that smooths the image while preserving
the edge; In Finance, they used to model the dynamics of financial assets such as stocks,
commodities, and currencies. In Materials science, they are used to captures the memory effect
that is observed in financial data.

In practice, it is hard to obtain the precise final value function data and instead we only
have its observed values. It is a fact that observations are allway contain random errors, which
stem from the limitations of the measuring device (measurement error). Hence, it is natural
that observations are often accompanied by some degree of noise. In this paper, we will explore
the case where such perturbations take the form of an additive stochastic white noise.

ξϵ(x) = ξ(x) + ϵW (x), (1.4)

where ϵ is the amplitude of the noise and W (x) is a Gaussian white noise process. Suppose
further that even the observations (1.4) cannot be observed exactly, but they can only be
observed in discretized form

⟨ξϵ, φj⟩ = ⟨ξ, φj⟩+ ϵ⟨W,φj⟩, j = 1, . . . , n, (1.5)

where {φj} is a orthonormal basic of Hilbert space L2(Ω); ⟨·, ·⟩ denotes the inner product in
L2(Ω); Wj := ⟨W,φj⟩ follows the standard normal distribution; and ⟨ξϵ, φj⟩ are independent
random variables for orthonormal functions φj. For more detail on the white noise model
see, [2–4].

Numerous research studies have been conducted on the inverse source problem of a time-
fractional diffusion equation. Over the past few decades, mathematicians across the globe have
made significant technical advancements in this area, such as the Quasi-Reversibility method
(see [5]), Quasi-Boundary Value method (see [6]), the Landweber iterative method (see [7]), the
Fractional Landweber method (see [8]), a Tikhonov regularization method [9], and a Fourier
truncation method (see [10]).

This Problem with random noise is ill-posed in the sense of Hadamard, therefore regular-
ization methods for it are required. The aim of this paper is to find the approximation for the
source ξ from indirect and noisy discrete observations (1.5) and then we use them to propose
a regularized solution by the Fourier truncation method.

The organizational structure of this paper is as follows. We first introduce some preliminary
materials in Section 2. In Section 3, we give an example of Ill-Posed. In Section 4, we draw
into main results: first we propose a new regularized solution, and then we give the convergent
estimates between a mild solution and a regularized solution under some priori assumptions on
the exact solution. To end this section, we discuses a regularization parameter choice rules.
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2 Preliminaries

Let Ω ⊂ Rd, d ≥ 1 be an open bounded domain and let ⟨·, ·⟩ be the inner product of L2(Ω).
Then, there exists an orthonormal basis {φj}∞j=1 (φj ∈ H1

0 (Ω) ∩ C∞(Ω)) of L2(Ω) consisting
of eigenfunctions 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ limj→∞ λj = +∞ of the Laplacian operator −∆ in Ω
such that −∆φj(x) = λjφj(x) for x ∈ Ω and φj(x) = 0 for x ∈ ∂Ω. We begin this subsection
by introducing a few properties of the eigenvalues of the operator ∆. For any τ ≥ 0, we also
define the space

Hτ (Ω) =
{
u ∈ L2(Ω) :

∞∑
j=1

λ2τ
j

∣∣〈u, φj

〉∣∣2 < +∞
}
,

then Hτ (Ω) is a Hilbert space endowed with the norm

∥u∥Hτ (Ω) =
( ∞∑

j=1

λ2τ
j |
〈
u, φj

〉
|2
) 1

2
.

Definition 2.1 ( [11]). Given ξ ∈ Hµ(Ω) (µ > 0) which have sequences of n (is known as
sample size) discrete observations ⟨ξϵ, φj⟩, j = 1, . . . , n. Non-parametric estimation of ξ is
suggested as

ξn(ϵ) =
n∑

j=1

⟨ξϵ, φj⟩φj(x). (2.1)

Lemma 2.2. Given ξ ∈ Hτ (Ω) (τ > 0), then the estimation errors are

E∥ξn(ϵ) − ξ∥2L2(Ω) ≤ ϵ2n(ϵ) +
1

λ2τ
n

||ξ||2Hτ . (2.2)

Here n(ϵ) := n depends on ϵ and satisfies that limϵ→0+ n(ϵ) = +∞.

Proof. Our proof starts with the observation that

E||ξn(ϵ) − ξ||2L2(Ω) = E

(
n∑

p=1

⟨ξn(ϵ) − ξ, φj⟩2
)

+
∞∑

j=n+1

⟨ξ, φj⟩2

= ϵ2E

(
n∑

j=1

W 2
j

)
+

∞∑
j=n+1

λ−2τ
j λ2τ

j ⟨ξ, φj⟩2

≤ ϵ2E

(
n∑

j=1

W 2
j

)
+

1

λ2τ
n

∞∑
j=n+1

λ2τ
j ⟨ξ, φj⟩2.

The assumption Wj = ⟨W,φj⟩
i.i.d∼ N(0, 1) implies that EW 2

j = 1. We then have the desired
result.

3 Recovering the source

In this subsection, we introduce the mild solution of the following initial value problem
c∂α

t u(x, t)−∆u(x, t) = f(x), x ∈ Ω, x ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = ρ(x), x ∈ Ω.

(3.1)
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Using the separation of variables to yield the solution of (3.1). Suppose that the exact u is
defined by Fourier series

u(x, t) =
∞∑
j=1

uj(t)φj(x), with uj(t) =
〈
u(·, t), φj

〉
. (3.2)

From (3.2), we get

uj(t) =
∞∑
j=1

[
exp

(
− λjt

αα−1
)
ρj +

〈
f, φj

〉 t∫
0

sα−1 exp
(
− λj

(
tα − sα

)
α−1
)
ds
]
φj(x).

Letting t = T and ρj = 0, we get

ξj(x) = uj(T ) =
∞∑
j=1

[〈
f, φj

〉 T∫
0

sα−1 exp
(
− λj(T

α − sα)α−1
)
ds
]
φj(x), (3.3)

and then

f(x) =
∞∑
j=1

〈
ξ, φj

〉
T∫
0

sα−1 exp
(
− λj(Tα − sα)α−1

)
ds

·

3.1 The ill-posedness

Theorem 3.1. The inverse source problem is ill-posed.

Proof. We will make the assumptions ξ(x) = φk(x) (1 ≤ k ≤ n), and the series of random
observe values that follow the model ⟨ξϵ, φj⟩ = ⟨ξ, φj⟩+ ϵ⟨W,φj⟩, (j = 1, . . . , n). Estimation of
the source function

ξkn(ϵ) = φk(x) +
n∑

j=1

ϵ⟨W,φj⟩φj(x)

and the source associate with random noise

fn(ϵ)(x) =
n∑

j=1

〈
ξkn(ϵ), φj

〉
φj(x)

T∫
0

sα−1 exp
(
− λj(Tα − sα)α−1

)
ds

.

We have

fn(ϵ)(x)− f(x) =
n∑

j=1

ϵ⟨W,φj⟩φj(x)
T∫
0

sα−1 exp
(
− λj(Tα − sα)α−1

)
ds

We have estimated

E∥ξkn(ϵ) − ξ∥2L2(Ω) = ϵ2n(ϵ)
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Estimates errors between fk(x) and f(x) is given as follow

E∥fn(ϵ)(x)− f(x)∥2L2(Ω) =
n∑

j=1

ϵ2E⟨W,φj⟩2∣∣∣ T∫
0

sα−1 exp
(
− λj(Tα − sα)α−1

)
ds
∣∣∣2

≥ ϵ2E⟨W,φn⟩2∣∣∣ T∫
0

sα−1 exp
(
− λn(Tα − sα)α−1

)
ds
∣∣∣2

where ∣∣∣∣
T∫

0

sα−1 exp
(
− λn(T

α − sα)α−1
)
ds

∣∣∣∣2 = ∣∣∣∣ 1λn

(
1− exp

(
− λnT

αα−1
))∣∣∣∣2 ≤ 1

λ2
n

so, we have

E∥fn(ϵ)(x)− f(x)∥2L2(Ω) ≥ λ2
nϵ

2.

In the case of d = 2 by choosing n(ϵ) = 1/ϵ, we have limϵ→0 E∥ξkn(ϵ) − ξ∥2L2(Ω) = 0, however

limϵ→0 E∥fn(ϵ)(x)− f(x)∥2L2(Ω) = ∞. We conclude that the inverse source problem is ill-posed.

3.2 Conditional stability of the source

Theorem 3.2. We have been working under the assumption that f ∈ Hτ (Ω), one has

∥f∥L2(Ω) ≤ C∥f∥
2

τ+1

Hτ (Ω) ∥ξ∥
2τ
τ+1

L2(Ω),

whereby

C =
∣∣1− exp(−λ1T

αα−1)
∣∣−2

.

Proof. Form now on, for a shorter,

Q(λj, α) =

T∫
0

sα−1 exp
(
− λj(T

α − sα)α−1
)
ds,

by using the Hölder inequality, we have

∥f∥2L2(Ω) =
∞∑
j=1

∣∣∣∣
〈
ξ, φj

〉
Q(λj, α)

∣∣∣∣2 = ∞∑
j=1

∣∣〈ξ, φj

〉∣∣ 2
τ+1
∣∣〈ξ, φj

〉∣∣ 2τ
τ+1∣∣Q(λj, α)

∣∣2
≤
( ∞∑

j=1

∣∣〈ξ, φj

〉∣∣2∣∣Q(λj, α)
∣∣2τ+2

) 1
τ+1
( ∞∑

j=1

∣∣〈ξ, φj

〉∣∣2) τ
τ+1

≤
( ∞∑

j=1

∣∣〈f, φj

〉∣∣2∣∣Q(λj, α)
∣∣2
) 1

τ+1

∥ξ∥
τ

τ+1

L2(Ω).
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Where∣∣Q(λj, α)
∣∣2 = ∣∣∣∣ 1λj

(
1− exp

(
− λjT

αα−1
))∣∣∣∣2 ≥ ∣∣∣∣ 1λj

(
1− exp

(
− λ1T

αα−1
))∣∣∣∣2, (3.4)

and this inequality leads to

∞∑
j=1

∣∣〈f, φj

〉∣∣2∣∣Q(λj, α)
∣∣2τ ≤

∞∑
j=1

λ2τ
j

∣∣〈f, φj

〉∣∣2∣∣1− exp(−λ1Tαα−1)
∣∣2τ . (3.5)

Combining (3.4) and (3.5), we get

∥f∥2L2(Ω) ≤
∣∣∣1− exp(−λ1T

αα−1)
∣∣∣−2

∥f∥
2

τ+1

Hτ (Ω) ∥ξ∥
2τ
τ+1

L2(Ω)

by setting C =
∣∣1− exp(−λ1T

αα−1)
∣∣−2

, then we get the result.

4 Regularization

Theorem 4.1. Given a positive constant τ > 0. Assume that ξ ∈ Hτ (Ω) and its statistics
estimate is ξn(ϵ). The source fuction f ∈ Hτ (Ω). If a regularized solution is given as follows

f ϵ
N(ϵ)(x) =

N(ϵ)∑
j=1

〈
ξn(ϵ), φj

〉
φj(x)

|Q(λj, α)|
, (4.1)

then we have the estimation

E
∥∥f ϵ

N(ϵ) − f
∥∥2
L2(Ω)

≤
2λ2τ

N(ϵ)∣∣1− exp(−λ1Tαα−1)
∣∣2τ
(
ϵ2n(ϵ) +

1

λ2τ
n

||ξ||2Hτ

)
+ 2
(
N(ϵ)

)−2τ∥∥f∥∥2
Hτ (Ω)

where the regularization parameter N(ϵ) and the sample size n(ϵ) are chosen such that

lim
ϵ→0+

N(ϵ) = +∞, lim
ϵ→0+

λ2τ
N(ϵ)ϵ

2n(ϵ) = lim
ϵ→0+

λ2τ
N(ϵ)

λ2τ
n(ϵ)

= 0 (4.2)

Remark 4.2. There are many ways to choose the parameters n(ϵ) and N(ϵ) which could satisfy
(4.2). Since λn(ϵ) ∼ n(ϵ)2/d, then one of the ways we can do by choosing the regularization
parameter N(ϵ) such that λN(ϵ) = (n(ϵ))b, where 0 < b < 4τ/d. The sample size n(ϵ) is chosen
as n(ϵ) = (1/ϵ)a/(b+1), 0 < a < 2.

Proof. We have the truncation form of f

fN(ϵ)(x) =

N(ϵ)∑
j=1

〈
ξ, φj

〉
φj(x)

|Q(λj, α)|
.

Using the triangle inequality, we get∥∥f ϵ
N(ϵ) − f

∥∥
L2(Ω)

≤
∥∥f ϵ

N(ϵ) − fN(ϵ)

∥∥
L2(Ω)

+
∥∥fN(ϵ) − f

∥∥
L2(Ω)

·
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then

E
∥∥f ϵ

N(ϵ) − f
∥∥2
L2(Ω)

≤ 2E
∥∥f ϵ

N(ϵ) − fN(ϵ)

∥∥2
L2(Ω)

+ 2E
∥∥fN(ϵ) − f

∥∥2
L2(Ω)

. (4.3)

In the following, we first consider the term E
∥∥f ϵ

N(ϵ) − fN(ϵ)

∥∥2
L2(Ω)

, we have

f ϵ
N(ϵ)(x)− fN(ϵ)(x) =

λj≤N(ϵ)∑
j=1

〈
ξϵ − ξ, φj

〉
φj(x)

Q(λj, α)

then

∥∥f ϵ
N(ϵ) − fN(ϵ)

∥∥2
L2(Ω)

=

λj≤N(ϵ)∑
j=1

∣∣〈ξϵ − ξ, φj

〉
|2

|Q(λj, α)|2

≤
λj≤N(ϵ)∑

j=1

λ2τ
j

∣∣〈ξϵ − ξ, φj

〉∣∣2∣∣1− exp(−λ1Tαα−1)
∣∣2τ

≤
λ2τ
N(ϵ)∣∣1− exp(−λ1Tαα−1)

∣∣2τ ∥ξn(ϵ) − ξ∥2L2(Ω).

Take expectation of both side

E
∥∥f ϵ

N(ϵ) − fN(ϵ)

∥∥2
L2(Ω)

≤
λ2τ
N(ϵ)∣∣1− exp(−λ1Tαα−1)

∣∣2τ
(
ϵ2n(ϵ) +

1

λ2τ
n

||ξ||2Hτ

)
(4.4)

Next, we continue to get the following estimate∥∥f − fN(ϵ)

∥∥2
L2(Ω)

≤
∞∑

λj≥N(ϵ)

λ−2τ
j λ2τ

j

∣∣〈ξ, φj

〉∣∣2
|Q(λj, α)|2

≤
∞∑

λj≥N(ϵ)

λ−2τ
j λ2τ

j

∣∣〈f, φj

〉∣∣2
≤ λ−2τ

N(ϵ)

∞∑
λj≥N(ϵ)

λ2τ
j

∣∣〈f, φj

〉∣∣2 ≤ λ−2τ
N(ϵ)

∥∥f∥∥2
Hτ (Ω)

. (4.5)

Combining (4.3)–(4.5), the proof is completed.
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