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ABSTRACT
In this paper, we study the Robin-Dirchlet problem (Pn) for a wave equation with the

term
1

n

n∑
i=1

u2( i−1
n
, t), n ∈ N. First, for each n ∈ N, under suitable conditions, we prove

the local existence and uniqueness of the weak solution un of (Pn). Next, we prove that
the sequence of solutions un of (Pn) converges strongly in appropriate spaces to the weak

solution u of the problem (P ), where (P ) is defined by (Pn) by replacing
1

n

n∑
i=1

u2( i−1
n
, t)

by

∫ 1

0

u2(y, t)dy. The main tools used here are the linearization method together with

the Faedo-Galerkin method and the weak compact method. We end the paper with a
remark related to a similar problem.
Keywords:Robin-Dirichlet problem, Faedo-Galerkin method, linearization method, weak
compact method.

1 Introduction

In this paper, we study the Robin-Dirichlet problem for a wave equation as follows

(Pn)

 utt −
(
1 + (S̄nu)(t)

)
uxx = f (x, t, u, ux, ut) , 0 < x < 1, 0 < t < T,

ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.1)

where f, ũ0, ũ1 are given functions and ζ ≥ 0 is a given constant and

(S̄nu)(t) =
1

n

n∑
i=1

u2( i−1
n
, t), n ∈ N. (1.2)
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The idea of considering Prob. (1.1) comes from the study of initial boundary value problems
for the wave equation in the form

utt −
(
1 +

∫ 1

0

u2(y, t)dy

)
uxx = f (x, t, u, ux, ut) , (1.3)

associted with the initial boundary conditions (1.1)2−3. Note that, Eq. (1.3) with the case
f = 0 is related to Carrier-type equations. Precisely, Carrier [1] studied the vibration of an
elastic string when the changes in tension are not small, of which the model was constructed
in the form

ρhutt −
(
1 +

EA

LT0

∫ L

0

u2dx

)
uxx = 0, (1.4)

where u(x, t) is the x-derivative of the deformation, T0 is the tension in the rest position, E
is the Young modulus, A is the cross-section of a string, L is the length of a string, ρ is the

density of a material. When f = 0, and replacing

∫ 1

0

u2(y, t)dy by

∫ 1

0

u2
x(y, t)dy, the Eq. (1.3)

is known as Kirchhoff-type equations that the original equation was introduced by Kirchhoff [6]

ρhutt =

(
P0 +

Eh

2L

∫ L

0

u2
x(y, t)dy

)
uxx, (1.5)

decribing free vibrations of elastic strings taking into account the changes in length of the
string produced by transverse vibrations, where u is the lateral deflection, L is the length of
the string, h is the area of the cross-section, E is the Young modulus of the material, ρ is
the mass density, and P0 is the initial tension. For many decades, numerous of studies about
Kirchhoff-Carrier type equation have been published, for example, we refer to the works of
Cavalcanti et. al. [2]- [4], in which the results of global existence, exponential, uniform decay
rates, and asymptotic behavior for the different models of Kirchhoff-type equations have been
obtained. Indeed, Cavalcanti et. al. [2] proved the existence of global solutions and exponential
decay for the following nonlinear problem

∂2y

∂t2
−M

(∫
Ω

|∇y|2 dx
)
∆y − ∂

∂t
∆y = f, in Q = Ω× (0,∞),

y = 0, on Σ1 = Γ1 × (0,∞),

M

(∫
Ω

|∇y|2 dx
)

∂y

∂ν
+

∂

∂t

(
∂y

∂ν

)
= g, on Σ0 = Γ0 × (0,∞),

y(0) = y0,
∂y

∂t
(0) = y1, in Ω,

(1.6)

where M is a C1-function and M(λ) ≥ λ0 > 0, ∀λ ≥ 0. Naturally, some studies paid attention
to extending in mathematical context of Kirchhoff-Carrier equations, see in [7], [9], [12], [15],
[16], [18], [19]. In [7], Long proved the solvability and established an asymptotic expansion in a
small parameter of solutions for a nonlinear wave equation of Kirchhoff-Carrier type as follows utt −B

(
t, ∥u∥2 , ∥ux∥2

)
uxx = f

(
x, t, u, ux, ut, ∥u∥2 , ∥ux∥2

)
,

ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.7)

where h0 > 0, h1 ≥ 0 are constants and B, f, ũ0, ũ1 are given functions, afterward, these
results were extended in [16]. In [19], Yang and Gong established the blow-up of solutions for
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the following viscoelastic equation of Kirchhoff type

utt(x, t)−M
(
∥∇u∥22

)
∆u+

∫ t

0

g(t− s)∆u(x, s)ds+ ut = |u|p−1 u, (1.8)

associated with Dirichlet boundary conditions. We also refer to [13] and [14] for some various
results of blow-up phenomenon of solutions for the Kirchhoff-type equations.

On the other hand, the idea for considering Prob. (1.1) also comes from the study of
problems containing the partitions of domain, for example, see [5], [11], [17] and the references
therein. In [5], Il’in established the uniqueness theorem for generalized solution to the mixed
problem for a wave equation with nonlocal boundary conditions (also called multi-point type
conditions) 

utt − uxx = 0, 0 < x < L, 0 < t < T,

u(0, t) = µ(t), u(L, t) =
k∑

i=1

αi(t)u(ξi, t), 0 < t < T,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), 0 < x < L,

(1.9)

where ξ1, · · · , ξk are positive constants, 0 ≤ ξ1 < · · · < ξk < L, and αi(t), i = 1, · · · , k are
given functions. In [11], Nhan et. al. considered the Robin problem for a nonlinear wave
equation with source containing multi-point nonlocal terms as follows

utt − uxx = f (x, t, u(x, t), u(η1, t), · · · , u(ηq, t), ut(x, t)) , 0 < x < 1, 0 < t < T,
ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.10)

where f, ũ0, ũ1 are given functions and h0, h1 ≥ 0, η1, · · · , ηq are given constants with h0+h1 >

0, 0 ≤ η1 < · · · < ηq ≤ 1. Here, we note more that, if we put (S̄nu)(t) =
1

n

n∑
i=1

u2( i−1
n
, t), then

(S̄nu)(t) can be considered as a combination of the unknown values u(η1, t), · · · , u(ηq, t) of Prob.
(1.10) in the case of q = n and ηi =

i−1
n
.

Motivated by the above mentioned works and based on the recent result of Ngoc et. al. [10]
for a strongly damped wave equation with arithmetic-mean terms, because of mathematical
context, we study the existence and some properties of the solution for Prob. (1.1).

Let us explain in some detail which are our main results. First, for each n ∈ N fixed, we
prove the existence and uniqueness of a local weak solution un of Prob. (Pn). Then, we can
consider the behavior of solutions un, ∀n ∈ N. It is clear to see that, if u ∈ L∞(0, T ;H1) then
the function y 7−→ u2(y, t) is continuous on [0, 1], a.e. t ∈ [0, T ], it leads to

(S̄nu)(t) =
1

n

n∑
i=1

u2( i−1
n
, t) →

∫ 1

0

u2(x, t)dx = ∥u(t)∥2 , as n → ∞.

Therefore, it is possible that Prob. (Pn) have a close relationship in a certain sense with
Prob. (P ), it is Prob. (1.3), (1.1)2−3. We shall prove this relationship to obtain a solution of
Prob.(P ) via approximate solutions un.

This paper is organized as follows. Section 2 is devoted to preliminaries. In Section 3, for
each n ∈ N, we prove the local existence and uniqueness of a weak solution un of Prob.(Pn). In
Section 4, we consider the relationship between Prob.(Pn) and Prob. (P ), where we show that
the sequence {un} in appropriate spaces strongly converges to a weak solution u of Prob.(P )
as n → ∞. The main tools used here are the linearization method together with the Faedo-
Galerkin method and the weak compact method. We end the paper with a remark related to
a similar problem.
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2 Preliminaries

Put Ω = (0, 1). We will omit the definitions of the usual function spaces and denote them by
the notations Lp = Lp(Ω), Hm = Hm (Ω) . Let ⟨·, ·⟩ be either the scalar product in L2 or the
dual pairing of a continuous linear functional and an element of a function space. The notation
∥·∥ stands for the norm in L2 and we denote by ∥·∥X the norm in the Banach space X. We call
X ′ the dual space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞ the Banach space of real functions
u : (0, T ) → X measurable, such that ∥u∥Lp(0,T ;X) < +∞, with

∥u∥Lp(0,T ;X) =


(∫ T

0

∥u(t)∥pX dt

)1/p

, if 1 ≤ p < ∞,

ess sup
0<t<T

∥u(t)∥X , if p = ∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = ▽u(t), uxx(t) = ∆u(t), denote
u(x, t), ∂u

∂t
(x, t), ∂2u

∂t2
(x, t), ∂u

∂x
(x, t), ∂2u

∂x2 (x, t), respectively.
On H1, we shall use the following norm

∥v∥H1 =
(
∥v∥2 + ∥vx∥2

)1/2
. (2.1)

We put
V = {v ∈ H1(Ω) : v(1) = 0}, (2.2)

a(u, v) =

∫ 1

0

ux(x)vx(x)dx+ ζu(0)v(0), u, v ∈ V. (2.3)

V is a closed subspace of H1 and on V three norms v 7−→ ∥v∥H1 , v 7−→ ∥vx∥ and v 7−→
∥v∥a =

√
a(v, v) are equivalent norms.

We have the following lemmas, the proofs of which are straightforward hence we omit the
details.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

∥v∥C0(Ω) ≤
√
2 ∥v∥H1 for all v ∈ H1. (2.4)

Lemma 2.2. Let ζ ≥ 0. Then the imbedding V ↪→ C0(Ω) is compact and{ ∥v∥C0(Ω) ≤ ∥vx∥ ≤ ∥v∥a ,
1√
2
∥v∥H1 ≤ ∥vx∥ ≤ ∥v∥a ≤

√
1 + ζ ∥v∥H1 ,

(2.5)

for all v ∈ V.

Lemma 2.3. Let ζ ≥ 0. Then the symmetric bilinear form a(·, ·) defined by (2.3) is continuous
on V × V and coercive on V.

The weak solution of Prob. (1.1) is defined in the following manner.

Definition 2.4. A function u is called a weak solution of the initial-boundary value problem
(1.1) if u ∈ VT = {u ∈ L∞(0, T ;V ∩H2) : u′ ∈ L∞(0, T ;V ), u′′ ∈ L∞(0, T ;L2)} and u satisfies
the following variational equation

⟨u′′(t), w⟩+ µ[u](t)a(u(t), w) = ⟨f [u](t), w⟩ , (2.6)
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for all w ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, u′(0) = ũ1, (2.7)

where

f [u](x, t) = f (x, t, u(x, t), ux(x, t), u
′(x, t)) , (2.8)

µ(t) = µ[u](t) = 1 + (S̄nu)(t),

(S̄nu)(t) =
1

n

n∑
i=1

u2
(
i−1
n
, t
)
.

3 Main results

3.1 Existence of a local weak solution

To study the existence and uniqueness of a weak solution of Prob. (1.1), for each n ∈ N, we
make the following assumptions:

(H1) : (ũ0, ũ1) ∈ (V ∩H2)× V, ũ0x(0)− ζũ0(0) = 0;
(H2) : f ∈ C1([0, 1]× [0, T ∗]× R4).

Let T ∗ > 0, for every T ∈ (0, T ∗], we put

VT = {v ∈ L∞(0, T ;V ∩H2) : v′ ∈ L∞(0, T ;V ), v′′ ∈ L∞(0, T ;L2)},
W1(T ) = C ([0, T ];V ) ∩ C1([0, T ];L2),

it is well known that VT , W1(T ) are two Banach spaces with respect to the norms (see Lions [8])

∥v∥VT
= max

{
∥v∥L∞(0,T ;V ∩H2) , ∥v′∥L∞(0,T ;V ) , ∥v′′∥L∞(0,T ;L2)

}
,

∥v∥W1(T ) = ∥v∥C([0,T ];V ) + ∥v′∥C1([0,T ];L2) .

For every M > 0, we put

W (M,T ) = {v ∈ VT : ∥v∥VT
≤ M}.

Now, we establish the recurrent sequence {um}. The first term is chosen as u0 ≡ 0, suppose
that

um−1 ∈ W (M,T ), (3.1)

we associate Prob. (1.1) with the following problem.
Find um ∈ W (M,T ) (m ≥ 1) satisfying the linear variational problem{

⟨u′′
m(t), w⟩+ µm(t)a(um(t), w) = ⟨Fm(t), w⟩ , ∀w ∈ V,

um(0) = ũ0, u
′
m(0) = ũ1,

(3.2)

where

Fm(x, t) = f [um−1](x, t) = f
(
x, t, um−1(x, t),∇um−1(x, t), u

′
m−1(x, t)

)
, (3.3)

µm(t) = 1 + (S̄num−1)(t) = 1 +
1

n

n∑
i=1

u2
m−1

(
i−1
n
, t
)
.

Then, we have the following theorem.
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Theorem 3.1. Let (H1) − (H2) hold. Then, there are positive constants M and T such that,
for u0 ≡ 0, there exists a recurrent sequence {um} ⊂ W (M,T ) defined by (3.1)-(3.3).

The proof of Theorem 3.1 is based on the linear approximation, the Faedo-Galerkin method
(introduced by Lions [8]) together with the techniques of prior estimates. This is similar to the
argument in [10] and [11].

Using the results given in Theorem 3.1 and the arguments of compactness, we get the main
result in this section as follows

Theorem 3.2. Let (H1)− (H2) hold. Then there exist the constans M > 0 and T > 0 chosen
as in Theorem 3.1 such that

(i) Prob. (1.1) has a unique weak solution u ∈ W (M,T ).
(ii) The recurrent sequence {um} defined by (3.1)-(3.3) converges to the solution u of Prob.

(1.1) strongly in W1(T ).
Furthermore, we also have the estimation

∥um − u∥W1(T ) ≤ CTk
m
T , for all m ∈ N, (3.4)

where 0 < kT < 1 and CT is a positive constant depending only on T, f, ũ0, ũ1 and kT .

Proof. The proof is also similar to the argument in [10] and [11], so we omit the details.

3.2 Relationship between (Pn) and P

In this section, we consider the following problems

(P )

 utt −
(
1 + ∥u(t)∥2

)
uxx = f (x, t, u, ux, ut) , 0 < x < 1, 0 < t < T,

ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

and

(Pn)

 utt −
(
1 + (S̄nu)(t)

)
uxx = f (x, t, u, ux, ut) , 0 < x < 1, 0 < t < T,

ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x).

In what follows, we shall analyze the relationship between (Pn) and (P ).
By Theorem 3.2, for each n, (Pn) has a unique weak solution un, i.e. un satisfies the following

variational equation

⟨un
tt(t), w⟩+

(
1 + (S̄nu)(t)

)
a(un(t), w) = ⟨f (·, t, un(t), un

x(t), u
n
t (t)) , w⟩ , (3.5)

for all w ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

un(0) = ũ0, un
t (0) = ũ1. (3.6)

Moreover, there exist positive constants M, T independing on n such that un satisfies

un ∈ W (M,T ), for all n ∈ N. (3.7)

From (3.7), we deduce that there exists a subsequence of {un} (still use the same symbol)
such that 

un → u in L∞(0, T ;V ∩H2) weak*,
un
t → u′ in L∞(0, T ;V ) weak*,

un
tt → u′′ in L∞(0, T ;L2) weak*.

(3.8)
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Applying the lemma of Aubin-Lions [8], there exists a subsequence of {un} (still use the
same symbol) such that {

un → u in C([0, T ];V ) strongly,
un
t → u′ in C([0, T ];L2) strongly.

(3.9)

On the other hand, we have

∣∣(S̄nu
n)(t)− (S̄nu)(t)

∣∣ ≤ 1

n

n∑
i=1

∥∥(un)2(t)− u2(t)
∥∥
C0(Ω̄)

(3.10)

≤ 2M ∥un(t)− u(t)∥V
≤ 2M ∥un(t)− u(t)∥C([0,T ];V ) .

By (3.9)1 and (3.10), we obtain∥∥S̄nu
n − S̄nu

∥∥
C([0,T ]

≤ 2M ∥un(t)− u(t)∥C([0,T ];V ) → 0. (3.11)

Because un is the unique weak solution of (Pn), so∫ T

0

⟨un
tt(t), w⟩φ(t)dt+

∫ T

0

a(un(t), w)φ(t)dt+

∫ T

0

(S̄nu
n)(t)a(un(t), w)φ(t)dt (3.12)

=

∫ T

0

⟨f (t, un(t), un
x(t), u

n
t (t))− f (t, u(t), ux(t), u

′(t)) , w⟩φ(t)dt

+

∫ T

0

⟨f (t, u(t), ux(t), u
′(t)) , w⟩φ(t)dt, ∀w ∈ V, ∀φ ∈ C∞

c (0, T ).

By (3.8)3 and (3.9)1 we get∫ T

0

⟨un
tt(t), w⟩φ(t)dt →

∫ T

0

⟨u′′(t), w⟩φ(t)dt, (3.13)∫ T

0

a(un(t), w)φ(t)dt →
∫ T

0

a(u(t), w)φ(t)dt.

We note that

∥f (·, t, un(t), un
x(t), u

n
t (t))− f (·, t, u(t), ux(t), u

′(t))∥
≤ 2KM(f) [∥un(t)− u(t)∥V + ∥un

t (t)− u′(t)∥] ,

where

KM(f) = ∥f∥C1(ĀM) ,

ĀM = [0, 1]× [0, T ∗]× [−M,M ]× [−
√
2M,

√
2M ]× [−M,M ].

Then

∥f (·, t, un, un
x, u

n
t )− f (·, t, u, ux, u

′)∥L2(QT ) (3.14)

≤ 2KM(f)
[
∥un − u∥C([0,T ];V ) + ∥un

t − u′∥C([0,T ];L2)

]
→ 0.
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Therefore, we conclude that∫ T

0

⟨f (·, t, un(t), un
x(t), u

n
t (t))− f (·, t, u(t), ux(t), u

′(t)) , w⟩φ(t)dt → 0. (3.15)

To check that∫ T

0

(S̄nu
n)(t)a(un(t), w)φ(t)dt →

∫ T

0

∥u(t)∥2 a(u(t), w)φ(t)dt, (3.16)

we need the lemmas below.

Lemma 3.3. The following convergence is valid∥∥∥∥S̄nu−
∫ 1

0

u2(y, ·)dy
∥∥∥∥2

L2(0,T )

=

∫ T

0

∣∣∣∣S̄nu(t)−
∫ 1

0

u2(y, t)dy

∣∣∣∣2 dt → 0, as n → ∞. (3.17)

Proof. Note that
1

n

n∑
i=1

g
(
i−1
n

)
→

∫ 1

0

g(y)dy, ∀g ∈ C0 ([0, 1]) . (3.18)

Since u ∈ L∞(0, T ;V ) ↪→ L∞(0, T ;C0(Ω̄)), so the function y 7−→ u(y, t), a.e. t ∈ [0, T ],
belongs to C0(Ω̄), then

(S̄nu)(t) =
1

n

n∑
i=1

u2
(
i−1
n
, t
)
→

∫ 1

0

u2(y, t)dy, as n → ∞. (3.19)

On the other hand∣∣(S̄nu)(t)
∣∣ = 1

n

n∑
i=1

u2

(
i− 1

n
, t

)
≤ 1

n

n∑
i=1

∥ux (t)∥2 ≤ M2, (3.20)∣∣∣∣∫ 1

0

u2(y, t)dy

∣∣∣∣ ≤ ∥ux (t)∥2 ≤ M2,

so ∣∣∣∣(S̄nu)(t)−
∫ 1

0

u2(y, t)dy

∣∣∣∣ ≤ 2M2, for all n ∈ N and a.e. t ∈ [0, T ]. (3.21)

Applying the dominated convergent theorem, (3.17) is confirmed. Hence, the lemma is proved.

Lemma 3.4. The following convergence is valid∫ T

0

(S̄nu
n)(t)a(un(t), w)φ(t)dt →

∫ T

0

∥u(t)∥2 a(u(t), w)φ(t)dt, as n → ∞.

Proof. Note that, by (3.12) and Lemma 3.3, it implies that∥∥∥∥S̄nu
n −

∫ 1

0

u2(y, ·)dy
∥∥∥∥
L2(0,T )

(3.22)

≤
∥∥S̄nu

n − S̄nu
∥∥
L2(0,T )

+

∥∥∥∥S̄nu−
∫ 1

0

u2(y, ·)dy
∥∥∥∥
L2(0,T )

≤ 2M ∥un − u∥L2(0,T ;V ) +

∥∥∥∥S̄nu−
∫ 1

0

u2(y, ·)dy
∥∥∥∥
L2(0,T )

→ 0, as n → ∞.
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Due to (3.9) and (3.22), it leads to∣∣∣∣∫ T

0

(S̄nu
n)(t)a(un(t), w)φ(t)dt−

∫ T

0

∥u(t)∥2 a(u(t), w)φ(t)dt
∣∣∣∣ (3.23)

≤
∫ T

0

∣∣[(S̄nu
n)(t)− ∥u(t)∥2

]
a(un(t), w)φ(t)

∣∣ dt+∫ T

0

∥u(t)∥2 |a(un(t)− u(t), w)φ(t)| dt

≤
∥∥∥∥S̄nu

n −
∫ 1

0

u2(y, ·)dy
∥∥∥∥
L2(0,T )

∥un∥L2(0,T ;V ) ∥w∥a ∥φ∥C([0,T ])

+M2 ∥un − u∥L2(0,T ;V ) ∥w∥a ∥φ∥C([0,T ])

≤

[∥∥∥∥S̄nu
n −

∫ 1

0

u2(y, ·)dy
∥∥∥∥
L2(0,T )

+M
√
T ∥un − u∥C([0,T ];V )

]
M ∥w∥a ∥φ∥C([0,T ])

→ 0, as n → ∞. (3.24)

Hence, the lemma is proved.

Finally, using Lemmas 3.2 and 3.4 and the convergences (3.14) and (3.16), after letting
n → ∞ in (3.13), we conclude that u ∈ W (M,T ) satisfying the equation∫ T

0

⟨u′′(t), w⟩φ(t)dt+
∫ T

0

(
1 + ∥u(t)∥2

)
a(u(t), w)φ(t)dt (3.25)

=

∫ T

0

⟨f (t, u(t), ux(t), u
′(t)) , w⟩φ(t)dt,

for all w ∈ V, φ ∈ C∞
c (0, T ), together with the initial conditions

u(0) = ũ0, u′(0) = ũ1. (3.26)

Consequently,
⟨u′′(t), w⟩+

(
1 + ∥u(t)∥2

)
a(u(t), w)

= ⟨f (t, u(t), ux(t), u
′(t)) , w⟩ , ∀w ∈ V,

u(0) = ũ0, u′(0) = ũ1,
u ∈ W (M,T ).

(3.27)

The uniqueness of a weak solution of (P ) is not difficult to prove, let us omit the proof here.
Therefore, we have the following theorem.

Theorem 3.5. Let (H1)− (H2) hold. Then there exist positive constants M and T such that
(i) Prob. (P ) has a unique weak solution u ∈ W (M,T ).
(ii) The sequence {un} converges to the weak solution u of Prob. (P ) in the sense

un → u in L∞(0, T ;H2 ∩ V ) weak*,
un
t → u′ in L∞(0, T ;V ) weak*,

un
tt → u′′ in L∞(0, T ;L2) weak*,
un → u in C ([0, T ];V ) ∩ C1([0, T ];L2) strongly.

(3.28)
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3.3 A remark

The methods used in Sections 3, 4 can be applied again to obtain similar results for
Prob.(1.1), where (S̄nu)(t) is defined as follows

(S̄nu)(t) =
1

n

n−1∑
i=0

u2
(
i+θi
n

, t
)
,

where θi ∈ [0, 1), i = 0, n− 1 are given constants.
Acknowledgment. The authors wish to express their sincere thanks to the editor and the
referees for the valuable comments and important remarks for the improvement of the paper.
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