High-order iterative scheme to the Robin problem for a nonlinear wave equation with viscoelastic term

by Doan Thi Nhu Quynh (Faculty of Mathematics and Computer Science, University of Science; Faculty of Applied Sciences, Ho Chi Minh City University of Food Industry), Ho Thai Lyen (Faculty of Mathematics and Computer Science, University of Science), Huynh Ai Trieu (Asia Pacific College), Nguyen Thanh Sang (Kien Giang University)

Article Info: Received Sep. 6th, 2022, Accepted Nov. 9th, 2022, Available online Dec. 15th, 2022

Corresponding author: doanquynh260919@yahoo.com
https://doi.org/10.37550/tdmu.EJS/2023.05.421

ABSTRACT
The report deals with the Robin problem for a nonlinear wave equation with viscoelastic term. Under some suitable conditions, we establish a high-order iterative scheme and then prove that the scheme converges to the weak solution of the original problem along with the error estimate. This result extends the result in [9].

Keywords: Faedo-Galerkin method, High-order iterative scheme, Nonlinear wave equation, Local existence.

1 Introduction
This report is devoted to study the Robin problem for a nonlinear wave equation with viscoelastic term as follows

\[
\begin{aligned}
&u_{tt} - u_{xx} + \lambda(x, t, u) |u_t|^{q-2} u_t + \int_0^t g(t-s) u_{xx}(x, s) ds = f(x, t, u), \\
&u_x(0, t) - u(0, t) = u_x(1, t) + u(1, t) = 0, \\
u(x, 0) = \tilde{u}_0(x), \quad u_t(x, 0) = \tilde{u}_1(x),
\end{aligned}
\]

where \(q \geq 2\) is a given constant and \(\lambda, f, g, \tilde{u}_0, \tilde{u}_1\) are given functions with \(\lambda(x, t, u) \geq \lambda_* > 0\).

Equation (1.1) usually arises within frameworks of mathematical models in engineering and physical sciences. The left-hand integral of equation (1.1) is called viscoelastic term.

When \(\lambda(x, t, u) \equiv a, f \equiv b |u|^{p-2} u\), equation (1.1) becomes the following nonlinear wave equation

\[
u_{tt} - \Delta u + a |u_t|^{q-2} u_t = b |u|^{p-2} u,
\]

where \(a, b > 0\) and \(p, q \geq 2\). This equation has been widely studied and obtained many interesting results such as the global existence, exponential decay and finite-time blow-up of solutions (see [1], [2], [4], [10], [12]).
When $\lambda(x, t, u) \equiv 1$ and $f \equiv b|u|^{p-2}u$, equation (1.1) is reduced to the viscoelastic wave equation of the form

$$u_{tt} - \Delta u + \int_0^t g(t-s)\Delta u(x, s)ds + |u_t|^{q-2}u_t = |u|^{p-2}u,$$

this form was considered by Messaoudi in [6], where the author proved a finite-time blow-up result for solutions with negative initial energy if $p > q$ and a global existence result for $q \geq p$.

In this paper, we associate with equation (1.1) a recurrent sequence $\{u_m\}$ defined by

$$\begin{align*}
 u_0 &\equiv 0, \\
 u'_m - \Delta u_m + \lambda(x, t, u_m)|u'_m|^{q-2}u'_m + \int_0^t g(t-s)\Delta u_m(s)ds \\
 &= \sum_{i=0}^{N-1} \frac{1}{i!} \frac{\partial^i f}{\partial u^i}(x, t, u_{m-1}) (u_m - u_{m-1})^i, \quad 0 < x < 1, \quad 0 < t < T, \\
 u_{mx}(0, t) - u_{m}(0, t) &= u_{mx}(1, t) + u_m(1, t) = 0, \\
 u_m(x, 0) &= \hat{u}_0(x), \quad u_{mx}(x, 0) = \hat{u}_1(x), \quad m = 1, 2, \ldots .
\end{align*}$$

If $\lambda \in C^1([0, 1] \times [0, T^*] \times \mathbb{R})$, $\lambda(x, t, u) \geq \lambda_*, g \in H^1(0, T^*)$, $f \in C^0([0, 1] \times \mathbb{R}_+ \times \mathbb{R})$ and some other conditions, we prove that the sequence $\{u_m\}$ converges at the N-order rate to the unique weak solution of Prob. (1.1), it means that

$$\|u_m - u\|_X \leq C \|u_{m-1} - u\|_X^N,$$

for some $C > 0$, where X is a suitable space. The scheme (1.4) is called the high-order iterative scheme or the N-order iterative scheme. We note more that the high-order iterative schemes as above were also used to obtain the existence of solutions in the previous papers, for example, see [7], [8], [9], [11].

This paper consists of four sections. Section 2 is devoted to the presentation of preliminaries. In Section 3, by using the Faedo-Galerkin approximation method and the arguments of compactness, we prove Theorem 3.1 to get the high-order iterative scheme (1.4). Finally, in Section 4, we prove Theorem 4.1 to obtain the convergence of the high-order iterative scheme (1.4) and then, the unique existence of a weak solution of Prob. (1.1) follows. The result obtained here is a generalization of the results of [9] and based on the ideas about recurrence relations as in [7], [8], [9], [11].

2 Preliminaries

Put $\Omega = (0, 1)$. We will omit the definitions of the usual function spaces and denote them by the notations $L^p = L^p(\Omega)$, $H^m = H^m(\Omega)$. Let $\langle \cdot, \cdot \rangle$ be either the scalar product in L^2 or the dual pairing of a continuous linear functional and an element of a function space. The notation $\|\cdot\|$ stands for the norm in L^2 and $\|\cdot\|_X$ is the norm in the Banach space X. We call X' the dual space of X. We denote by $L^p(0, T; X)$, $1 \leq p \leq \infty$ for the Banach space of real functions $u : (0, T) \to X$ measurable, such that $\|u\|_{L^p(0, T; X)} < +\infty$, with

$$\|u\|_{L^p(0, T; X)} = \begin{cases} \\
 \left(\int_0^T \|u(t)\|^p_X dt \right)^{1/p}, & \text{if } 1 \leq p < \infty, \\
 \text{ess sup}_{0 < t < T}\|u(t)\|_X, & \text{if } p = \infty.
\end{cases}$$

86
We write \(u(t), u'(t) = u_t(t) = \dot{u}(t), u''(t) = u_{tt}(t) = \ddot{u}(t), u_x(t) = \nabla u(t), u_{xx}(t) = \Delta u(t), \) to denote \(u(x, t), \frac{\partial u}{\partial t}(x, t), \frac{\partial^2 u}{\partial t^2}(x, t), \frac{\partial u}{\partial x}(x, t), \frac{\partial^2 u}{\partial x^2}(x, t), \) respectively. With \(f \in C^k([0, 1] \times \mathbb{R}_+ \times \mathbb{R}), \)
\(f = f(x, t, u), \) we put \(D_1f = \frac{\partial f}{\partial x}, D_2f = \frac{\partial f}{\partial t}, D_3f = \frac{\partial f}{\partial u} \) and \(D^\alpha f = D_1^{\alpha_1}D_2^{\alpha_2}D_3^{\alpha_3}f; \alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}_+^3, |\alpha| = \alpha_1 + \alpha_2 + \alpha_3 \leq k, D^{(0,0,0)}f = f. \)

On \(H^1, \) we shall use the following norm
\[
\|v\|_{H^1} = (\|v\|^2 + \|v_x\|^2)^{1/2}.
\]

We also define the following bilinear form and the other norms on \(H^1 \)
\[
a(u, v) = \int_0^1 u_x(x)v_x(x)dx + u(0)v(0) + u(1)v(1), \forall u, v \in H^1, \tag{2.1}
\]

\[
\|v\|_a = \sqrt{a(v, v)}, \forall v \in H^1,
\] and
\[
\|v\|_i = \left(v^2(i) + \int_0^1 v_x^2(x)dx \right)^{1/2}, i = 0, 1. \tag{2.3}
\]

On \(H^1, \) three norms \(\|v\|_{H^1}, \|v\|_a \) and \(\|v\|_i \) are equivalent norms.

We now have the following lemmas, the proofs of which are straightforward so we omit the details.

Lemma 2.1. The imbedding \(H^1 \hookrightarrow C^0(\bar{\Omega}) \) is compact and

\[
\begin{align*}
(i) \quad & \|v\|_{C^0(\bar{\Omega})} \leq \sqrt{2} \|v\|_{H^1}, \\
(ii) \quad & \|v\|_{C^0(\bar{\Omega})} \leq \sqrt{2} \|v\|_i, \\
(iii) \quad & \frac{1}{\sqrt{3}} \|v\|_{H^1} \leq \|v\|_i \leq \sqrt{3} \|v\|_{H^1},
\end{align*}
\]

for all \(v \in H^1, i = 0, 1. \)

Lemma 2.2. The symmetric bilinear form \(a(\cdot, \cdot) \) defined by (2.1) is continuous on \(H^1 \times H^1 \) and coercive on \(H^1, \) i.e.,

\[
\begin{align*}
(i) \quad & |a(u, v)| \leq 5 \|u\|_{H^1} \|v\|_{H^1}, \text{ for all } u, v \in H^1, \\
(ii) \quad & a(u, u) \geq \frac{1}{3} \|u\|^2_{H^1}, \text{ for all } u \in H^1.
\end{align*}
\]

3 Main results

3.1 A high-order iterative scheme

In this section, we shall establish a high-order iterative scheme in order to obtain the existence of a weak solution for Prob. (1.1). Let us note here that the weak solution \(u \) of Prob. (1.1) will be obtained in Section 4 (Theorem 4.1) in the following manner:

Find \(u \in L^\infty(0, T; H^2) \) such that \(u' \in L^\infty(0, T; H^1), u'' \in L^\infty(0, T; L^2) \) and \(u \) satisfies the following variational problem and the initial conditions

\[
\begin{align*}
\langle u''(t), w \rangle + a(u(t), w) + \langle \lambda(t, u(t)) \rangle u'(t) |u'(t)|^{q-2} u'(t), w \\
= \int_0^t g(t-s)a(u(s), w)ds + \langle f(x, t, u), w \rangle, \forall w \in H^1,
\end{align*}
\]

\[
u(0) = \tilde{u}_0, \quad u'(0) = \tilde{u}_1,
\]

87
where $a(\cdot, \cdot)$ is the symmetric bilinear form on H^1 defined by (2.1).

Let $T^* > 0$, we make the following assumptions:

\begin{itemize}
 \item [(H1)] $(\tilde{u}_0, \tilde{u}_1) \in H^2 \times H^1$;
 \item [(H2)] $g \in H^1(0, T^*)$;
 \item [(H3)] $\lambda \in C^1([0, 1] \times [0, T^*] \times \mathbb{R})$, and there exists a positive constant λ_* such that $\lambda(x, t, u) \geq \lambda_* > 0$, $\forall (x, t, u) \in [0, 1] \times [0, T^*] \times \mathbb{R}$;
 \item [(H4)] $f \in C^0([0, 1] \times \mathbb{R}_+ \times \mathbb{R})$ such that
 \begin{itemize}
 \item [(i)] $D_1^i f \in C^0([0, 1] \times \mathbb{R}_+ \times \mathbb{R})$, $1 \leq i \leq N$,
 \item [(ii)] $D_1 D_2^i f \in C^0([0, 1] \times \mathbb{R}_+ \times \mathbb{R})$, $0 \leq i \leq N - 1$.
 \end{itemize}
\end{itemize}

Fix $T^* > 0$. For each $T \in (0, T^*)$ and $M > 0$, we put

\begin{equation}
\begin{aligned}
W(M, T) &= \{ v \in L^\infty(0, T; H^2) : v' \in L^\infty(0, T; H^1), v'' \in L^2(Q_T), \\
& \quad \text{with } \| v \|_{L^\infty(0, T; H^2)}, \| v' \|_{L^\infty(0, T; H^1)}, \| v'' \|_{L^2(Q_T)} \leq M \}, \\
W_1(M, T) &= \{ v \in W(M, T) : v'' \in L^\infty(0, T; L^2) \}.
\end{aligned}
\end{equation}

Now, we construct the following recurrent sequence $\{ u_m \}$:

The first term is chosen as $u_0 \equiv 0$, suppose that

\begin{equation}
\begin{aligned}
 u_{m-1} &\in W_1(M, T), \quad (3.3)
\end{aligned}
\end{equation}

we find $u_m \in W_1(M, T)$ ($m \geq 1$) satisfying the nonlinear variational problem

\begin{equation}
\begin{aligned}
 & \begin{cases}
 \langle u_m'(t), w \rangle + a(u_m(t), w) + \langle \lambda(t, u_m(t)) \rangle u_m'(t) \| u_m'(t) \|^{q-2} u_m'(t), w \rangle \\
 \quad = \int_0^t g(t-s) a(u_m(s), w) ds + \langle F_m(t), w \rangle, \forall w \in H^1,
 \end{cases} \\
 & u_m(0) = \tilde{u}_0, u_m'(0) = \tilde{u}_1,
\end{aligned}
\end{equation}

in which

\begin{equation}
F_m(x, t) = \sum_{i=0}^{N-1} \frac{1}{i!} D^i_2 f(x, t, u_{m-1}) (u_m - u_{m-1})^i.
\end{equation}

Then we have the following theorem.

Theorem 3.1. Let $(H_1) - (H_4)$ hold. Then there exist a constant $M > 0$ depending on \tilde{u}_0, \tilde{u}_1 and a constant $T > 0$ depending on \tilde{u}_0, \tilde{u}_1, g, f, q and λ such that, for $u_0 \equiv 0$, there exists a recurrent sequence $\{ u_m \} \subset W_1(M, T)$ defined by (3.4)-(3.5).

Proof. The proof is based on the Faedo - Galerkin approximation method introduced by Lions [5], the arguments of compactness, together with the same evaluation techniques as in [9]. \qed

3.2 Convergence and error estimate of the scheme

This section is devoted to prove the N-order convergence of the sequence $\{ u_m \}$ established in Theorem 3.1 to the weak solution of Prob. (1.1). First, we denote

\begin{equation}
W_1(T) = C([0, T] ; H^1) \cap C^1([0, T] ; L^2),
\end{equation}

it is clear to see that $W_1(T)$ is a Banach space with respect to the norm

\begin{equation}
\| v \|_{W_1(T)} = \| v \|_{C([0, T] ; H^1)} + \| v' \|_{C^0([0, T] ; L^2)}.
\end{equation}

Then we have the following theorem.
Theorem 3.2. Let \((H_1) - (H_4)\) hold. Then, there exist constants \(M > 0\) and \(T > 0\) defined as in Theorem 3.1 such that

(i)\ Prob. \((1.1)\) has a unique weak solution \(u \in W_1(M, T)\) and the sequence \(\{u_m\}\) defined by \((3.4)-(3.5)\) converges at a rate of order \(N\) to the solution \(u\) strongly in the space \(W_1(T)\), in the sense

\[
\|u_m - u\|_{W_1(T)} \leq C \|u_{m-1} - u\|^N_{W_1(T)},
\]

for all \(m \geq 1\), where \(C\) is a suitable constant.

(ii) Furthermore, the following estimate is fulfilled

\[
\|u_m - u\|_{W_1(T)} \leq C_T (\gamma_T)^{N^m}, \text{ for all } m \in \mathbb{N},
\]

where \(C_T\) and \(0 < \gamma_T < 1\) are the constants depending only on \(T\).

Proof. (i) Existence of a solution. We shall prove that \(\{u_m\}\) is a Cauchy sequence in \(W_1(T)\). Indeed, we put \(v_m = u_{m+1} - u_m\). Then \(v_m\) satisfies the variational problem

\[
\begin{aligned}
&\int_0^t \left< \lambda(s, u_{m+1}(s)) \left[|u_{m+1}'(s)|^{q-2} u_{m+1}'(s) - |u_m'(s)|^{q-2} u_m'(s) \right], v_m(s) \right> ds \\
&+ \int_0^t g(t - s) a(v_m(s), w) ds + \langle F_{m+1}(t) - F_m(t), w \rangle, \forall w \in H^1,
\end{aligned}
\]

Taking \(w = v_m'\) in \((3.10)\), after integrating in \(t\), and noting that

\[
-2\int_0^t \left< \lambda(s, u_{m+1}(s)) \left[|u_{m+1}'(s)|^{q-2} u_{m+1}'(s) - |u_m'(s)|^{q-2} u_m'(s) \right], v_m'(s) \right> ds \leq 0,
\]

we get

\[
X_m(t) \leq -2\int_0^t \left< [\lambda(s, u_{m+1}(s)) - \lambda(s, u_m(s))] |u_m'(s)|^{q-2} u_m'(s), v_m'(s) \right> ds + 2\int_0^t g(t - s) a(v_m(s), v_m(s)) ds
\]

\[
+ 2\int_0^t ds \int_0^s g'(s - \tau) a(v_m(\tau), v_m(s)) d\tau
\]

\[
- 2\int_0^t ds \int_0^s \langle F_{m+1}(s) - F_m(s), v_m'(s) \rangle ds,
\]

\[
\equiv \sum_{k=1}^5 J_k,
\]

with

\[
X_m(t) = \|v_m'(t)\|^2 + \|v_m(t)\|^2_{a}.
\]

We denote the constants \(K_M(f), \overline{K}_M(\lambda), \) as follows

\[
\begin{cases}
K_M(f) = \|f\|_{C^0(\Omega_M)} + \sum_{i=1}^N \|D_i^3f\|_{C^0(\Omega_M)} + \sum_{i=1}^{N-1} \|D_1 D_i^3 f\|_{C^0(\Omega_M)}, \\
\|f\|_{C^0(\Omega_M)} = \sup_{(x,t,u)\in\Omega_M} |f(x, t, u)|, \\
\overline{K}_M(\lambda) = \|D_3 \lambda\|_{C^0(\Omega_M)}, \\
\Omega_M = [0, 1] \times [0, T^*] \times [-\sqrt{2M}, \sqrt{2M}].
\end{cases}
\]
Next, we need to estimate the integrals on the right side of (3.11) as follows. First, it is not difficult to estimate terms J_1, J_2, J_3 and J_4 as follows:

\[J_1 = -2 \int_0^t \langle [\lambda(s, u_{m+1}(s)) - \lambda(s, u_m(s))] u_m'(s), v_{m}'(s) \rangle ds \]
\[\leq 2K_M(\lambda)M^{q-1} \int_0^t \|v_m(s)\| \|v_m'(s)\| ds \leq K_M(\lambda)M^{q-1} \int_0^t X_m(s) ds; \]

\[J_2 = 2 \int_0^t g(t - \tau)a(v_m(\tau), v_m(t)) d\tau \leq \frac{1}{2} X_m(t) + 2 \|g\|_{L^2(0, T^*)}^2 \int_0^t X_m(s) ds; \]

\[J_3 = -2 \int_0^t \langle g(0) a(v_m(s), v_m(s)) ds \leq 2 |g(0)| \int_0^t X_m(s) ds; \]

\[J_4 = -2 \int_0^t ds \int_0^s g(s - \tau)a(v_m(\tau), v_m(s)) d\tau \leq 2\sqrt{T} \|g\|_{L^2(0, T^*)} \int_0^t X_m(s) ds. \]

Next, using Taylor’s expansion of the function $f(x, t, u_m) = f(x, t, u_{m-1} + v_{m-1})$ around the point u_{m-1} up to order N, we obtain

\[f(x, t, u_m) - f(x, t, u_{m-1}) = \sum_{i=1}^{N-1} \frac{1}{i!} D^i f(x, t, u_{m-1}) v^i_{m-1} + \frac{1}{N!} D^N f(x, t, \tilde{\theta}_m) v^N_{m-1}, \]

where $\tilde{\theta}_m = \tilde{\theta}(x, t) = u_m + \theta_1 v_{m-1}$, $0 < \theta_1 < 1$.

Hence, it follows from (3.5) and (3.15) that

\[F_{m+1}(x, t) - F_m(x, t) = \sum_{i=1}^{N-1} \frac{1}{i!} D^i f(x, t, u_m) v^i_m + \frac{1}{N!} D^N f(x, t, \tilde{\theta}_m) v^N_{m-1}. \]

Therefore, we have

\[\|F_{m+1}(t) - F_m(t)\| \leq K_M(f) \sum_{i=1}^{N-1} \frac{1}{i!} (\sqrt{2} \|v_m(t)\|_{H^1})^i + \frac{1}{N!} K_M(f) (\sqrt{2} \|v_{m-1}(t)\|_{H^1})^N \]
\[\leq \beta_T^{(1)} \sqrt{X_m(t)} + \beta_T^{(2)} \|v_{m-1}\|_{W^1(T)}^N, \]

where $\beta_T^{(1)} = \sqrt{6} K_M(f) \sum_{i=1}^{N-1} \frac{1}{i!} (\sqrt{2}M)^{i-1}$, $\beta_T^{(2)} = \frac{\sqrt{2}N}{N!} K_M(f)$.

It implies that

\[J_5 = 2 \int_0^t \langle F_{m+1}(s) - F_m(s), v_m'(s) \rangle ds \]
\[\leq 2 \int_0^t \|F_{m+1}(s) - F_m(s)\| \|v_m'(s)\| ds \]
\[\leq 2 \int_0^t \left(\beta_T^{(1)} \sqrt{X_m(s)} + \beta_T^{(2)} \|v_{m-1}\|_{W^1(T)}^N \right) \sqrt{X_m(s)} ds \]
\[\leq 2\beta_T^{(1)} \int_0^t X_m(s) ds + 2\beta_T^{(2)} \|v_{m-1}\|_{W^1(T)}^N \int_0^t \sqrt{X_m(s)} ds \]
\[\leq 2\beta_T^{(1)} \int_0^t X_m(s) ds + T\beta_T^{(2)} \|v_{m-1}\|_{W^1(T)}^{2N} + \beta_T^{(2)} \int_0^t X_m(s) ds. \]

90
Combining (3.11), (3.14) and (3.18), we obtain

\[X_m(t) \leq 2T \beta_T^{(2)} \|v_{m-1}\|_{W_1(T)}^{2N} + \beta_T^{(3)} \int_0^t X_m(s) ds, \]

(3.19)

where

\[\beta_T^{(3)} = 2 \left[K_M(\lambda)M^{q-1} + 2 \left(|g(0)| + \|g\|_{L^2(0,T^*)}^2 + \sqrt{T^*} \|g'\|_{L^2(0,T^*)} + \beta_T^{(1)} + \beta_T^{(2)} \right) \right]. \]

By using Gronwall’s lemma, (3.19) gives

\[\|v_m\|_{W_1(T)} \leq \mu_T \|v_{m-1}\|_{W_1(T)}^N, \]

(3.20)

with \(\mu_T = (1 + \sqrt{3}) \sqrt{2T \beta_T^{(2)} \exp(T \beta_T^{(3)})}. \)

Choosing \(T > 0 \) small enough such that \(\gamma_T = M \mu_T \frac{1}{T} < 1 \), it follows from (3.20) that

\[\|u_m - u_{m+p}\|_{W_1(T)} \leq (1 - \gamma_T)^{-1} T^{\frac{1}{N+1}} (\gamma_T)^N, \]

for all \(m \) and \(p \in \mathbb{N} \).

(3.21)

Hence, \(\{u_m\} \) is a Cauchy sequence in \(W_1(T) \). Thus, there exists \(u \in W_1(T) \) such that

\[u_m \to u \text{ strongly in } W_1(T). \]

(3.22)

Note that \(u_m \in W_1(M, T) \), then there exists a subsequence \(\{u_{m_j}\} \) of \(\{u_m\} \) such that

\[
\begin{align*}
\{u_{m_j}\} & \to u \quad \text{in } L^\infty(0, T; H^2) \text{ weakly*}, \\
u'_{m_j} & \to u' \quad \text{in } L^\infty(0, T; H^1) \text{ weakly*}, \\
u''_{m_j} & \to u'' \quad \text{in } L^2(Q_T) \text{ weakly}, \\
u & \in W(M, T).
\end{align*}
\]

Moreover, by (3.22) and the inequalities

\[\sup_{0 \leq t \leq T} \|\lambda(t, u_m(t)) - \lambda(t, u(t))\| \leq K_M(\lambda) \|u_m - u\|_{W_1(T)}, \]

(3.24)

\[\left\|\left|u_{m}^{\prime q-2} u_m' - u' q-2 u' \right\|_{C^0([0, T]; L^2)} \right\| \leq (q - 1) \left(\sqrt{2M} \right)^{q-2} \|u_m - u\|_{W_1(T)}, \]

we have

\[\lambda(\cdot, t, u_m(t)) \to \lambda(\cdot, t, u(t)) \text{ strongly in } C^0([0, T]; L^2), \]

(3.25)

\[|u_m'|^{q-2} u_m' \to |u'|^{q-2} u' \text{ strongly in } C^0([0, T]; L^2). \]

On the other hand

\[\|F_m(\cdot, t) - F(\cdot, t, u(t))\| \]

(3.26)

\[\leq \|f(\cdot, t, u_{m-1}(t)) - f(\cdot, t, u(t))\| + \left\| \sum_{i=1}^{N-1} \frac{1}{i!} D_i f(\cdot, t, u_{m-1})(u_m - u_{m-1})^i \right\| \]

\[\leq K_M(\lambda) \left\| u_{m-1} - u \right\|_{W_1(T)} + \sum_{i=1}^{N-1} \frac{1}{i!} \|u_m - u_{m-1}\|_{W_1(T)}^i. \]
Therefore, it implies from (3.22) and (3.25) that
\[F_m(t) \to f(\cdot, t, u(t)) \] strongly in \(C^0([0, T]; L^2) \).

Finally, passing to limit in (3.4) and (3.5) as \(m = m_j \to \infty \), there exists \(u \in W(M, T) \) satisfying the equation
\[
\langle u''(t), w \rangle + a(u(t), w) + \langle \lambda(t, u(t)) |u'(t)|^{q-2} u'(t), w \rangle
= \int_0^t g(t-s)a(u(s), w)ds + \langle f(\cdot, t, u(t)), w \rangle,
\]
for all \(w \in H^1 \) and the initial condition
\[
 u(0) = \tilde{u}_0, \quad u'(0) = \tilde{u}_1. \tag{3.29}
\]

On the other hand, it follows from (3.23)\textsubscript{4} and (3.28) that
\[
 u'' = \Delta u - \lambda(x, t, u) |u'|^{q-2} u' + \int_0^t g(t-s)\Delta u(s)ds + f(x, t, u) \in L^\infty(0, T; L^2), \tag{3.30}
\]
hence, \(u \in W_1(M, T) \).

Uniqueness. Let \(u_1, u_2 \in W_1(M, T) \) be two weak solutions of Prob. (1.1). Then \(\bar{u} = u_1 - u_2 \) satisfies the variational problem
\[
\begin{cases}
\langle \bar{u}''(t), w \rangle + a(\bar{u}(t), w) \\
= -\langle \lambda(t, u_1(t)) (|u_1'(t)|^{q-2} u_1'(t) - |u_2'(t)|^{q-2} u_2'(t)), w \rangle \\
-\langle (\lambda(t, u_1(t)) - \lambda(t, u_2(t))) |u_2'(t)|^{q-2} u_2'(t), w \rangle \\
+ \int_0^t g(t-s)a(\bar{u}(s), w)ds + \langle f(x, t, u_1) - f(x, t, u_2), w \rangle, \quad \forall w \in H^1,
\end{cases}
\]
\[
\bar{u}(0) = \bar{u}'(0) = 0. \tag{3.31}
\]

We take \(w = \bar{u}'(t) \) in (3.31)\textsubscript{1} and integrate in \(t \) to get
\[
\rho(t) = \|\bar{u}'(t)\|^2 + \|\bar{u}(t)\|^2 \leq 2 \int_0^t \langle (\lambda(s, u_1(s)) - \lambda(s, u_2(s))) |u_2'(s)|^{q-2} u_2'(s), \bar{u}'(s) \rangle ds
\]
\[
+ 2 \int_0^t g(t-\tau)a(\bar{u}(\tau), \bar{u}(\tau)) d\tau - 2 \int_0^t g(0) a(\bar{u}(\tau), \bar{u}(\tau)) ds
\]
\[
- 2 \int_0^t ds \int_0^s g'(s-\tau)a(\bar{u}(\tau), \bar{u}(\tau)) d\tau
\]
\[
+ 2 \int_0^t \langle f(x, s, u_1(s)) - f(x, s, u_2(s)), \bar{u}'(s) \rangle ds
\]
\[
\equiv \sum_{k=1}^4 j_k, \tag{3.33}
\]

92
We estimate the integrals \bar{J}_k, $k = 1, 5$ as follows.

\[
\begin{align*}
\bar{J}_1 &= -2\int_0^t \left((\lambda(s, u_1(s)) - \lambda(s, u_2(s))) |u'_2(s)| + u'_2(s), \bar{u}'(s) \right) ds \\
&\leq 2\bar{K}_M(\lambda)M^{q-1}\int_0^t \|\bar{u}(s)\| \|\bar{u}'(s)\| ds \\
&\leq \bar{K}_M(\lambda)M^{q-1}\int_0^t \rho(s) ds;
\end{align*}
\]

\[
\begin{align*}
\bar{J}_2 &= 2\int_0^t g(t - \tau) a(\bar{u}(\tau), \bar{u}(t)) d\tau \\
&\leq \frac{1}{2} \rho(t) + 2 \|g\|_{L^2(0,T^*)} \int_0^t \rho(s) ds;
\end{align*}
\]

\[
\begin{align*}
\bar{J}_3 &= -2\int_0^t g(0) a(\bar{u}(s), \bar{u}(s)) ds \\
&\leq 2 |g(0)| \int_0^t \rho(s) ds;
\end{align*}
\]

\[
\begin{align*}
\bar{J}_4 &= -2\int_0^t ds \int_0^s g'(s - \tau) a(\bar{u}(\tau), \bar{u}(s)) d\tau \\
&\leq 2\sqrt{T^*} \|g'\|_{L^2(0,T^*)} \int_0^t \rho(s) ds;
\end{align*}
\]

\[
\begin{align*}
\bar{J}_5 &= 2\int_0^t \left(f(x, s, u_1(s)) - f(x, s, u_2(s)), \bar{u}'(s) \right) ds \\
&\leq 2\sqrt{6}K_M(f) \int_0^t \rho(s) ds.
\end{align*}
\]

We deduce from (3.32) and (3.34), that

\[
\rho(t) = \|\bar{u}'(t)\|^2 + \|\bar{u}(t)\|_a^2 \leq k_T \int_0^t \rho(s) ds,
\]

where

\[
k_T = 2 \left[\bar{K}_M(\lambda)M^{q-1} + 2 \left(\|g\|_{L^2(0,T^*)}^2 + |g(0)| + \sqrt{T^*} \|g'\|_{L^2(0,T^*)} + \sqrt{6}K_M(f) \right) \right].
\]

Using Gronwall’s Lemma, it follows that $\rho(t) = \|\bar{u}'(t)\|^2 + \|\bar{u}(t)\|_a^2 \equiv 0$, i.e., $\bar{u} = u_1 - u_2 = 0$. Therefore, $u \in W_4(M, T)$ is an unique local weak solution of Prob. (1.1).

(ii) Passing to the limit in (3.21) as $p \to \infty$ for fixed m, we get (3.9).

By the similar argument, (3.8) follows. Theorem 3.2 is proved completely.

Acknowledgment. The authors wish to express their sincere thanks to the editor and the referees for the valuable comments and important remarks for the improvement of the paper.

References

