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ABSTRACT
The report deals with the Robin problem for a nonlinear wave equation with viscoelastic
term. Under some suitable conditions, we establish a high-order iterative scheme and
then prove that the scheme converges to the weak solution of the original problem along
with the error estimate. This result extends the result in [9].

Keywords: Faedo-Galerkin method, High-order iterative scheme, Nonlinear wave
equation, Local existence.

1 Introduction

This report is devoved to study the Robin problem for a nonlinear wave equation with vis-
coelastic term as follows

utt − uxx + λ(x, t, u) |ut|q−2 ut +

∫ t

0

g(t− s)uxx(x, s)ds = f(x, t, u),

0 < x < 1, 0 < t < T,
ux(0, t)− u(0, t) = ux(1, t) + u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.1)

where q ≥ 2 is a given constant and λ, f, g, ũ0, ũ1 are given functions with λ(x, t, u) ≥ λ∗ > 0.
Equation (1.1)1 usually arises within frameworks of mathematical models in engineering

and physical sciences. The left-hand integral of equation (1.1)1 is called viscoelastic term.
When λ(x, t, u) ≡ a, g = 0 and f ≡ b |u|p−2 u, equation (1.1)1 becomes the following

nonlinear wave equation

utt −∆u+ a |ut|q−2 ut = b |u|p−2 u, (1.2)

where a, b > 0 and p, q ≥ 2. This equation has been widely studied and obtained many
interesting results such as the global existence, exponential decay and finite-time blow-up of
solutions (see [1], [2], [4], [10], [12]).
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When λ(x, t, u) ≡ 1 and f ≡ b |u|p−2 u, equation (1.1)1 is reduced to the viscoelastic wave
equation of the form

utt −∆u+

∫ t

0

g(t− s)∆u(x, s)ds+ |ut|q−2 ut = |u|p−2 u, (1.3)

this form was considered by Messaoudi in [6], where the author proved a finite-time blow-up
result for solutions with negative initial energy if p > q and a global existence result for q ≥ p.
Laterly, Kafini and Messaoudi [3] also obtained a blow-up result of a Cauchy problem for a
nonlinear viscoelastic equation in the form (1.3) with q = 2.

In this paper, we associate with equation (1.1)1 a recurrent sequence {um} defined by

u0 ≡ 0,

u′′
m −∆um + λ(x, t, um) |u′

m|
q−2 u′

m +

∫ t

0

g(t− s)∆um(s)ds

=
N−1∑
i=0

1

i!

∂if

∂ui
(x, t, um−1) (um − um−1)

i , 0 < x < 1, 0 < t < T,

umx(0, t)− um(0, t) = umx(1, t) + um(1, t) = 0,
um(x, 0) = ũ0(x), umt(x, 0) = ũ1(x), m = 1, 2, · · · .

(1.4)

If λ ∈ C1 ([0, 1]× [0, T ∗]× R) , λ(x, t, u) ≥ λ∗ > 0, g ∈ H1 (0, T ∗) , f ∈ C0([0, 1]× R+ × R)
and some other conditions, we prove that the sequence {um} converges at the N -order rate to
the unique weak solution of Prob. (1.1), it means that

∥um − u∥X ≤ C ∥um−1 − u∥NX , (1.5)

for some C > 0, where X is a suitable space. The scheme (1.4) is called the high-order iterative
scheme or the N-order iterative scheme. We note more that the high-order iterative schemes as
above were also used to obtain the existence of solutions in the previous papers, for example,
see [7], [8], [9], [11].

This paper consists of four sections. Section 2 is devoted to the presentation of preliminar-
ies. In Section 3, by using the Faedo-Galerkin approximation method and the arguments of
compactness, we prove Theorem 3.1 to get the high-order iterative scheme (1.4). Finally, in
Section 4, we prove Theorem 4.1 to obtain the convergence of the high-order iterative scheme
(1.4) and then, the unique existence of a weak solution of Prob. (1.1) follows. The result
obtained here is a generalization of the results of [9] and based on the ideas about recurrence
relations as in [7], [8], [9], [11].

2 Preliminaries

Put Ω = (0, 1). We will omit the definitions of the usual function spaces and denote them by
the notations Lp = Lp(Ω), Hm = Hm (Ω) . Let ⟨·, ·⟩ be either the scalar product in L2 or the
dual pairing of a continuous linear functional and an element of a function space. The notation
∥·∥ stands for the norm in L2 and ∥·∥X is the norm in the Banach space X. We call X ′ the
dual space of X. We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T ) → X measurable, such that ∥u∥Lp(0,T ;X) < +∞, with

∥u∥Lp(0,T ;X) =


(∫ T

0

||u(t)||pXdt
)1/p

, if 1 ≤ p < ∞,

ess sup
0<t<T

||u(t)||X , if p = ∞.
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We write u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = ▽u(t), uxx(t) = ∆u(t), to
denote u(x, t), ∂u

∂t
(x, t), ∂2u

∂t2
(x, t), ∂u

∂x
(x, t), ∂2u

∂x2 (x, t), respectively. With f ∈ Ck([0, 1]×R+ ×R),
f = f(x, t, u), we put D1f = ∂f

∂x
, D2f = ∂f

∂t
, D3f = ∂f

∂u
and Dαf = Dα1

1 Dα2
2 Dα3

3 f ; α = (α1, α2,
α3) ∈ Z3

+, |α| = α1 + α2 + α3 ≤ k, D(0,0,0)f = D(0)f = f.
On H1, we shall use the following norm

∥v∥H1 =
(
∥v∥2 + ∥vx∥2

)1/2
.

We also define the following bilinear form and the other norms on H1

a(u, v) =

∫ 1

0

ux(x)vx(x)dx+ u(0)v(0) + u(1)v(1), ∀u, v ∈ H1, (2.1)

∥v∥a =
√

a(v, v), ∀v ∈ H1, (2.2)

and

∥v∥i =
(
v2(i) +

∫ 1

0

v2x(x)dx

)1/2

, i = 0, 1. (2.3)

On H1, three norms ∥v∥H1 , ∥v∥a and ∥v∥i are equivalent norms.
We now have the following lemmas, the proofs of which are straighforward so we omit the

details.
Lemma 2.1. The imbedding H1 ↪→ C0(Ω̄) is compact and

(i) ∥v∥C0(Ω̄) ≤
√
2 ∥v∥H1 ,

(ii) ∥v∥C0(Ω̄) ≤
√
2 ∥v∥i ,

(iii) 1√
3
∥v∥H1 ≤ ∥v∥i ≤

√
3 ∥v∥H1 ,

(2.4)

for all v ∈ H1, i = 0, 1.
Lemma 2.2. The symmetric bilinear form a(·, ·) defined by (2.1) is continuous on H1×H1

and coercive on H1 , i.e.,

(i) |a(u, v)| ≤ 5 ∥u∥H1 ∥v∥H1 , for all u, v ∈ H1,

(ii) a(u, u) ≥ 1

3
∥u∥2H1 , for all u ∈ H1.

(2.5)

3 Main results

3.1 A high-order iterative scheme

In this section, we shall establish a high-order iterative scheme in order to obtain the existence
of a weak solution for Prob. (1.1). Let us note here that the weak solution u of Prob. (1.1)
will be obtained in Section 4 (Theorem 4.1) in the following manner:

Find u ∈ L∞(0, T ;H2) such that u′ ∈ L∞(0, T ;H1), u′′ ∈ L∞(0, T ;L2) and u satisfies the
following variational problem and the initial conditions

⟨u′′(t), w⟩+ a(u(t), w) +
〈
λ(t, u(t)) |u′ (t)|q−2 u′ (t) , w

〉
=

∫ t

0

g(t− s)a(u(s), w)ds+ ⟨f (x, t, u) , w⟩ , ∀w ∈ H1,

u(0) = ũ0, u
′(0) = ũ1,

(3.1)
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where a(·, ·) is the symmetric bilinear form on H1 defined by (2.1).
Let T ∗ > 0, we make the following assumptions:

(H1) (ũ0, ũ1) ∈ H2 ×H1;
(H2) g ∈ H1 (0, T ∗) ;
(H3) λ ∈ C1 ([0, 1]× [0, T ∗]× R) , and there exists a positive constant λ∗ such that

λ(x, t, u) ≥ λ∗ > 0, ∀(x, t, u) ∈ [0, 1]× [0, T ∗]× R;
(H4) f ∈ C0([0, 1]× R+ × R) such that

(i) Di
3f ∈ C0([0, 1]× R+ × R), 1 ≤ i ≤ N,

(ii) D1D
i
3f ∈ C0([0, 1]× R+ × R), 0 ≤ i ≤ N − 1.

Fix T ∗ > 0. For each T ∈ (0, T ∗] and M > 0, we put
W (M,T ) = {v ∈ L∞(0, T ;H2) : v′ ∈ L∞(0, T ;H1), v′′ ∈ L2(QT ),

with ∥v∥L∞(0,T ;H2) , ∥v′∥L∞(0,T ;H1) , ∥v′′∥L2(QT ) ≤ M},
W1(M,T ) = {v ∈ W (M,T ) : v′′ ∈ L∞(0, T ;L2)}.

(3.2)

Now, we construct the following recurrent sequence {um} :
The first term is chosen as u0 ≡ 0, suppose that

um−1 ∈ W1(M,T ), (3.3)

we find um ∈ W1(M,T ) (m ≥ 1) satisfying the nonlinear variational problem
⟨u′′

m(t), w⟩+ a(um(t), w) + ⟨λ(t, um(t)) |u′
m(t)|

q−2 u′
m(t), w⟩

=

∫ t

0

g(t− s)a(um(s), w)ds+ ⟨Fm(t), w⟩ , ∀w ∈ H1,

um(0) = ũ0, u
′
m(0) = ũ1,

(3.4)

in which

Fm(x, t) =
N−1∑
i=0

1

i!
Di

3f(x, t, um−1) (um − um−1)
i . (3.5)

Then we have the following theorem.

Theorem 3.1. Let (H1)− (H4) hold. Then there exist a constant M > 0 depending on ũ0, ũ1

and a constant T > 0 depending on ũ0, ũ1, g, f, q and λ such that, for u0 ≡ 0, there exists a
recurrent sequence {um} ⊂ W1(M,T ) defined by (3.4)-(3.5).

Proof. The proof is based on the Faedo - Galerkin approximation method introduced by Lions
[5], the arguments of compactness, together with the same evaluation techniques as in [9].

3.2 Convergence and error estimate of the scheme

This section is devoted to prove the N -order convergence of the sequence {um} established in
Theorem 3.1 to the weak solution of Prob. (1.1). First, we denote

W1(T ) = C([0, T ] ;H1) ∩ C1([0, T ] ;L2), (3.6)

it is clear to see that W1(T ) is a Banach space with respect to the norm

∥v∥W1(T ) = ∥v∥C([0,T ];H1) + ∥v′∥C0([0,T ];L2) . (3.7)

Then we have the following theorem.
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Theorem 3.2. Let (H1)− (H4) hold. Then, there exist constants M > 0 and T > 0 defined as
in Theorem 3.1 such that

(i) Prob. (1.1) has a unique weak solution u ∈ W1(M,T ) and the sequence {um} defined by
(3.4)-(3.5) converges at a rate of order N to the solution u strongly in the space W1(T ), in the
sense

∥um − u∥W1(T ) ≤ C ∥um−1 − u∥NW1(T ) , (3.8)

for all m ≥ 1, where C is a suitable constant.
(ii) Furthermore, the following estimate is fulfilled

∥um − u∥W1(T ) ≤ CT (γT )
Nm

, for all m ∈ N, (3.9)

where CT and 0 < γT < 1 are the constants depending only on T .

Proof. (i) Existence of a solution. We shall prove that {um} is a Cauchy sequence in W1(T ).
Indeed, we put vm = um+1 − um. Then vm satisfies the variational problem

⟨v′′m(t), w⟩+ a (vm(t), w)

+⟨λ(t, um+1(t))
[∣∣u′

m+1(t)
∣∣q−2

u′
m+1(t), w⟩ − |u′

m(t)|
q−2 u′

m(t)
]
, w⟩

= −⟨[λ(t, um+1(t))− λ(t, um(t))] |u′
m(t)|

q−2 u′
m(t), w⟩

+

∫ t

0

g(t− s)a (vm(s), w) ds+ ⟨Fm+1(t)− Fm(t), w⟩ , ∀w ∈ H1,

vm(0) = v′m(0) = 0.

(3.10)

Taking w = v′m in (3.10), after integrating in t, and noting that

−2

∫ t

0

〈
λ(s, um+1(s))

(∣∣u′
m+1 (s)

∣∣q−2
u′
m+1 (s)− |u′

m (s)|q−2
u′
m (s)

)
, v′m(s)

〉
ds ≤ 0,

we get

Xm(t) ≤ −2

∫ t

0

⟨[λ(s, um+1(s))− λ(s, um(s))] |u′
m(s)|

q−2
u′
m(s), v

′
m(s)⟩ds (3.11)

+ 2

∫ t

0

g(t− τ)a (vm(τ), vm(t)) dτ − 2

∫ t

0

g (0) a (vm(s), vm(s)) ds

− 2

∫ t

0

ds

∫ s

0

g′(s− τ)a (vm(τ), vm(s)) dτ

+ 2

∫ t

0

⟨Fm+1(s)− Fm(s), v
′
m(s)⟩ ds

≡
5∑

k=1

Jk,

with
Xm(t) = ∥v′m(t)∥

2
+ ∥vm(t)∥2a . (3.12)

We denote the constants KM(f), K̄M(λ), as follows
KM(f) = ∥f∥C0(ΩM ) +

N∑
i=1

∥Di
3f∥C0(ΩM ) +

N−1∑
i=1

∥D1D
i
3f∥C0(ΩM ) ,

∥f∥C0(ΩM ) = sup
(x,t,u)∈ΩM

|f(x, t, u)| ,

K̄M(λ) = ∥D3λ∥C0(ΩM ) ,

ΩM = [0, 1]× [0, T ∗]× [−
√
2M,

√
2M ].

(3.13)
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Next, we need to estimate the integrals on the right side of (3.11) as follows.
First, it is not difficult to estimate terms J1, J2, J3 and J4 as follows:

J1 = −2

∫ t

0

⟨[λ(s, um+1(s))− λ(s, um(s))] |u′
m(s)|

q−2
u′
m(s), v

′
m(s)⟩ds (3.14)

≤ 2K̄M(λ)M q−1

∫ t

0

∥vm(s)∥ ∥v′m(s)∥ ds ≤ K̄M(λ)M q−1

∫ t

0

Xm(s)ds;

J2 = 2

∫ t

0

g(t− τ)a (vm(τ), vm(t)) dτ ≤ 1

2
Xm(t) + 2 ∥g∥2L2(0,T ∗)

∫ t

0

Xm(s)ds;

J3 = −2

∫ t

0

g (0) a (vm(s), vm(s)) ds ≤ 2 |g (0)|
∫ t

0

Xm(s)ds;

J4 = −2

∫ t

0

ds

∫ s

0

g′(s− τ)a (vm(τ), vm(s)) dτ ≤ 2
√
T ∗ ∥g′∥L2(0,T ∗)

∫ t

0

Xm(s)ds.

Next, using Taylor’s expansion of the function f(x, t, um) = f(x, t, um−1 + vm−1) around the
point um−1 up to order N , we obtain

f(x, t, um)− f(x, t, um−1) =
N−1∑
i=1

1

i!
Di

3f(x, t, um−1)v
i
m−1 +

1

N !
DN

3 f(x, t, θ̃m)v
N
m−1, (3.15)

where θ̃m = θ̃m(x, t) = um + θ1vm−1, 0 < θ1 < 1.
Hence, it follows from (3.5) and (3.15) that

Fm+1(x, t)− Fm(x, t) =
N−1∑
i=1

1

i!
Di

3f(x, t, um)v
i
m +

1

N !
DN

3 f(x, t, θ̃m)v
N
m−1. (3.16)

Therefore, we have

∥Fm+1(t)− Fm(t)∥ ≤ KM(f)
N−1∑
i=1

1

i!
(
√
2 ∥vm(t)∥H1)

i +
1

N !
KM(f)(

√
2 ∥vm−1(t)∥H1)

N (3.17)

≤ β
(1)
T

√
Xm(t) + β

(2)
T ∥vm−1∥NW1(T ) ,

where β
(1)
T =

√
6KM(f)

N−1∑
i=1

1

i!

(√
2M

)i−1
, β

(2)
T =

√
2
N

N !
KM(f).

It implies that

J5 = 2

∫ t

0

⟨Fm+1(s)− Fm(s), v
′
m(s)⟩ ds (3.18)

≤ 2

∫ t

0

∥Fm+1(s)− Fm(s)∥ ∥v′m(s)∥ ds

≤ 2

∫ t

0

(
β
(1)
T

√
Xm(s) + β

(2)
T ∥vm−1∥NW1(T )

)√
Xm(s)ds

≤ 2β
(1)
T

∫ t

0

Xm(s)ds+ 2β
(2)
T ∥vm−1∥NW1(T )

∫ t

0

√
Xm(s)ds

≤ 2β
(1)
T

∫ t

0

Xm(s)ds+ Tβ
(2)
T ∥vm−1∥2NW1(T ) + β

(2)
T

∫ t

0

Xm(s)ds.
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Combining (3.11), (3.14) and (3.18), we obtain

Xm(t) ≤ 2Tβ
(2)
T ∥vm−1∥2NW1(T ) + β

(3)
T

∫ t

0

Xm(s)ds, (3.19)

where
β
(3)
T = 2

[
K̄M(λ)M q−1 + 2

(
|g (0)|+ ∥g∥2L2(0,T ∗) +

√
T ∗ ∥g′∥L2(0,T ∗) + β

(1)
T

)
+ β

(2)
T

]
.

By using Gronwall’s lemma, (3.19) gives

∥vm∥W1(T ) ≤ µT ∥vm−1∥NW1(T ) , (3.20)

with µT =
(
1 +

√
3
)√

2Tβ
(2)
T exp(Tβ

(3)
T ).

Choosing T > 0 small enough such that γT = Mµ
1

N−1

T < 1, it follows from (3.20) that

∥um − um+p∥W1(T ) ≤ (1− γT )
−1(µT )

−1
N−1 (γT )

Nm

, for all m and p ∈ N. (3.21)

Hence, {um} is a Cauchy sequence in W1(T ). Thus, there exists u ∈ W1(T ) such that

um → u strongly in W1(T ). (3.22)

Note that um ∈ W1(M,T ), then there exists a subsequence {umj
} of {um} such that

umj
→ u in L∞(0, T ;H2) weakly*,

u′
mj

→ u′ in L∞(0, T ;H1) weakly*,

u′′
mj

→ u′′ in L2(QT ) weakly,

u ∈ W (M,T ).

(3.23)

Moreover, by (3.22) and the inequalities

sup
0≤t≤T

∥λ(t, um(t))− λ(t, u(t))∥ ≤ K̄M(λ) ∥um − u∥W1(T ) , (3.24)∥∥∥|u′
m|

q−2
u′
m − |u′|q−2

u′
∥∥∥
C0([0,T ];L2)

≤ (q − 1)
(√

2M
)q−2

∥um − u∥W1(T ) ,

we have

λ(·, t, um(t)) → λ(·, t, u(t)) strongly in C0([0, T ] ;L2), (3.25)

|u′
m|

q−2
u′
m → |u′|q−2

u′ strongly in C0([0, T ] ;L2).

On the other hand

∥Fm(·, t)− f(·, t, u(t))∥ (3.26)

≤ ∥f(·, t, um−1(t))− f(·, t, u(t))∥+

∥∥∥∥∥
N−1∑
i=1

1

i!
Di

3f(·, t, um−1)(um − um−1)
i

∥∥∥∥∥
≤ KM(f)

[
∥um−1 − u∥W1(T ) +

N−1∑
i=1

1

i!
∥um − um−1∥iW1(T )

]
.
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Therefore, it implies from (3.22) and (3.25) that

Fm(t) → f(·, t, u(t)) strongly in C0([0, T ] ;L2). (3.27)

Finally, passing to limit in (3.4) and (3.5) as m = mj → ∞, there exists u ∈ W (M,T )
satisfying the equation

⟨u′′(t), w⟩+ a(u(t), w) +
〈
λ(t, u(t)) |u′ (t)|q−2

u′ (t) , w
〉

(3.28)

=

∫ t

0

g(t− s)a(u(s), w)ds+ ⟨f(·, t, u(t)), w⟩ ,

for all w ∈ H1 and the initial condition

u(0) = ũ0, u′(0) = ũ1. (3.29)

On the other hand, it follows from (3.23)4 and (3.28) that

u′′ = ∆u− λ(x, t, u) |u′|q−2
u′ +

∫ t

0

g(t− s)∆u(s)ds+ f(x, t, u) ∈ L∞(0, T ;L2), (3.30)

hence, u ∈ W1(M,T ).

Uniqueness. Let u1, u2 ∈ W1(M,T ) be two weak solutions of Prob. (1.1). Then ū = u1−u2

satisfies the variational problem

⟨ū′′(t), w⟩+ a(ū(t), w)

= −
〈
λ(t, u1(t))

(
|u′

1 (t)|
q−2 u′

1 (t)− |u′
2 (t)|

q−2 u′
2 (t)

)
, w

〉
−
〈
(λ(t, u1(t))− λ(t, u2(t))) |u′

2 (t)|
q−2 u′

2 (t) , w
〉

+

∫ t

0

g(t− s)a(ū(s), w)ds+ ⟨f (x, t, u1)− f (x, t, u2) , w⟩ , ∀w ∈ H1,

ū(0) = ū′(0) = 0.

(3.31)

We take w = ū′(t) in (3.31)1 and integrate in t to get

ρ(t) = ∥ū′(t)∥2 + ∥ū(t)∥2a (3.32)

≤ −2

∫ t

0

〈
(λ(s, u1(s))− λ(s, u2(s))) |u′

2 (s)|
q−2

u′
2 (s) , ū

′(s)
〉
ds

+ 2

∫ t

0

g(t− τ)a (ū(τ), ū(t)) dτ − 2

∫ t

0

g (0) a (ū(s), ū(s)) ds

− 2

∫ t

0

ds

∫ s

0

g′(s− τ)a (ū(τ), ū(s)) dτ (3.33)

+ 2

∫ t

0

⟨f(x, s, u1 (s))− f(x, s, u2 (s)), ū
′(s)⟩ ds

≡
4∑

k=1

J̄k,
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We estimate the integrals J̄k, k = 1, 5 as follows.

J̄1 = −2

∫ t

0

〈
(λ(s, u1(s))− λ(s, u2(s))) |u′

2 (s)|
q−2

u′
2 (s) , ū

′(s)
〉
ds (3.34)

≤ 2K̄M(λ)M q−1

∫ t

0

∥ū(s)∥ ∥ū′(s)∥ ds ≤ K̄M(λ)M q−1

∫ t

0

ρ(s)ds;

J̄2 = 2

∫ t

0

g(t− τ)a (ū(τ), ū(t)) dτ ≤ 1

2
ρ(t) + 2 ∥g∥2L2(0,T ∗)

∫ t

0

ρ(s)ds;

J̄3 = −2

∫ t

0

g (0) a (ū(s), ū(s)) ds ≤ 2 |g (0)|
∫ t

0

ρ(s)ds;

J̄4 = −2

∫ t

0

ds

∫ s

0

g′(s− τ)a (ū(τ), ū(s)) dτ ≤ 2
√
T ∗ ∥g′∥L2(0,T ∗)

∫ t

0

ρ(s)ds;

J̄5 = 2

∫ t

0

⟨f(x, s, u1 (s))− f(x, s, u2 (s)), ū
′(s)⟩ ds ≤ 2

√
6KM(f)

∫ t

0

ρ(s)ds.

We deduce from (3.32) and (3.34), that

ρ(t) = ∥ū′(t)∥2 + ∥ū(t)∥2a ≤ kT

∫ t

0

ρ(s)ds, (3.35)

where

kT = 2
[
K̄M(λ)M q−1 + 2

(
∥g∥2L2(0,T ∗) + |g (0)|+

√
T ∗ ∥g′∥L2(0,T ∗) +

√
6KM(f)

)]
.

Using Gronwall’s Lemma, it follows that ρ(t) = ∥ū′(t)∥2+∥ū(t)∥2a ≡ 0, i.e., ū = u1−u2 = 0.
Therefore, u ∈ W1(M,T ) is an unique local weak solution of Prob. (1.1).

(ii) Passing to the limit in (3.21) as p → ∞ for fixed m, we get (3.9).
By the similar argument, (3.8) follows. Theorem 3.2 is proved completely.
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