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ABSTRACT
In this work, we focus on investigating ill-posed problems (according to the definition
given by Hadamard) in the topic of its application. Specifically, we present some theo-
ries about the properties of the ill-posed problem in image processing. By using discrete
Fourier transform and fast Fourier transform methods, we present several results on
image processing topic. Finally, some illustrative examples are presented through algo-
rithms running on Python software.
Keywords: Ill-Posedness; FFT method; Image processing.

1 Introduction

Recently, the application of mathematical models to solve practical problems is being at-
tracted by many researchers. One of those models is the ill-posed problem in image processing.
First, to understand what an ill-posed problem is, we recall the concept of the well-posed prob-
lem, introduced by a mathematician named J.S. Hadamard (a prominent French mathematician
who lived from 1865 to 1963 and made significant contributions to various fields of mathemat-
ics, such as partial differential equations, number theory, differential geometry and complex
analysis). He raised the question about ill-posed problems in his book [11]. According to the
definition of ill-posed problems is given by Hadamard, which are problems that do not satisfy
the conditions of well-posedness, which are existence, uniqueness and stability of the solution.
Ill-posed problems are a common occurrence in image processing. These problems arise when
the input data is insufficient or noisy, leading to an infinite number of possible solutions. Most
of inverse problems are ill-posed, are prevalent in many applications such as medical imaging,
astronomy, seismic imaging, nondestructive testing, and signal processing [4,13]. Ill-posed prob-
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lems in computer vision and imaging are described by linear equations and emphasize in various
applied engineering and physics areas such as plasma physics, nuclear physics, geophysics and
radiophysics [14].

Regularization is a technique used to solve ill-posed problems in image processing. It involves
adding constraints to the problem to reduce the number of possible solutions. Regularization
can be achieved by adding a penalty term to the objective function, which helps to control
the smoothness of the solution. It can help reduce noise and enhance the quality of images
by imposing some constraints or penalties on the image processing model. Regularization
techniques can also prevent over fitting, which occurs when the model learns too much from
the training data and fails to generalize well to new data. In this topic of regularization, many
authors have been concerned about the regularization of the ill-posed problem such as Tuan,
Thach, Can [17–19].

Some examples of regularization techniques for image processing are used as follows

� Data augmentation, which creates new images from existing ones by applying transfor-
mations such as rotation, scaling, cropping, flipping, etc. This increases the diversity and
size of the training data and helps the model learn more robust features [6].

� L1 and L2 regularization, which add a term to the loss function that penalizes large
weights or coefficients in the model. This reduces the complexity and variance of the
model and makes it less sensitive to noise [6, 8].

� Total variation denoising, which minimizes a functional that consists of a data fidelity
term and a total variation term. The data fidelity term measures how well the denoised
image matches the noisy image, while the total variation term measures how smooth or
piecewise constant the denoised image. This technique preserves edges and removes noise
in images [8].

� Tikhonov regularization, this is a method used to solve ill-posed problems in image pro-
cessing. Ill-posed problems are those that do not have a unique solution or whose solution
is sensitive to small changes in the input data. Tikhonov regularization is a technique
that adds a regularization term to the objective function to control the effect of noise on
the solution [15].

There is no general technique for dealing with ill-posed problems. Each situation has to be
handled differently depending on the main issue – instability. In this work, we focus on the fast
Fourier transform (FFT) method to ill-posed problem in image processing. More specifically,
we will apply the FFT algorithm to recover images that are noisy by the Gaussian model.

So, why we choose the FFT method to solve the ill-posed problems in image processing?
To answer this question, we reiterate the Fourier transform (FT) method, it is first introduced
by Jean Baptiste Joseph Fourier (21 March 1768 - 16 May 1830, was a French mathematician
and physicist). As the limiting case of the Fourier series for non-periodic signals, FT is used
to transfer the signal to the frequency domain since it offers numerous superior advantages
over the classical time domain, particularly for analytical applications. The discrete version of
FT, also known as discrete Fourier transform (DFT), has been developed to address a variety
of difficulties, particularly those related to digital image processing. Although the advantage
of DFT is that it is very easy to program and therefore easy to implement in any coding
language, the disadvantage is that it requires a lot of computation time. This increasingly
needs to improve in modern computational science. Then FFT method has been introduced
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to significantly reduce the computational complexity. Particularly when the signals are two
dimensional, like picture signals, FFT is a helpful signal encoding technique that may be used
for quick processing.

The main purpose of this study is to investigate the following linear observations in additive
Gaussian noise model

f = Ag + w (1.1)

where f ∈ Rn is original data (image), g ∈ Rm is observed data (image), A ∈ Rn×m is a linear
operator, w ∈ N (0, σ) is noise Gaussian smoothing model.

Goal: Recovering data g from original data f (which is given) through the action of oper-
ators A and f noisy by the Gaussian model w. In general, ill-posed inverse problem (finding g
when f is known) is harder to solve than the direct challenge of finding f when g is known.

2 Preliminaries

In this section, we recall some theories related to the research direction of this work.

2.1 Signal deblurring

In image processing, the deconvolution (or deblurring) problem of recovering an input signal
g in time t from an observed signal f is given by

f(t) =

∫
R
a(t− z)g(z)dz + w(t) (2.1)

where the function a is the blurring kernel in the reality model such as blur by time, tomography,
MRI, etc. When the observed data is not noisy (i.e. w = 0) then we have

f(t) =

∫
R
a(t− s)g(z)dz (2.2)

using the Fourier transform of (2.2) as follows

f̂(ξ) =

∫
R
exp(−iξt)f(t)dt. (2.3)

Applying the convolution theorem, we have

f̂(ξ) = â(ξ)ĝ(ξ).

By using the formula of inverse Fourier transform, we obtain

g(t) =
1

2π

∫
R
exp(itξ)

f̂(ξ)

â(ξ)
dξ.

On the other hand, we have f̂(ξ) = â(ξ)ĝ(ξ) + ŵ(ξ). Applying the convolution theorem again,
we have the estimated observe data gobs as follows

gobs(t) = g(t) +
1

2π

∫
R
exp(itξ)

ŵ(ξ)

â(ξ)
dξ, (2.4)
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2.2 The discrete Fourier transform (DFT)

Let the source data f(t) is the continuous signal and the samples N is given by

f [0], f [1], f [2], . . . , f [k], . . . , f [N − 1]

where the DFT has the same meaning as the continuous Fourier transform for signals known
only at N distinct moments in time by sample times T (in more detail, this is a finite sequence
of input data). Then we have the original signal f(t) is affected by the Fourier transform as
follows

f̂(ξ) =

∫
R
exp(−iξt)f(t)dt.

An each sample might be considered f [k] as an impulse with the area f [k]. Then, at the sample
points, the following integral exists

f̂(ξ) =

∫ (N−1)T

0

exp(−iξt)f(t)dt

= exp(−i0)f [0] + exp(−iξT )f [1] + . . .+ exp(−iξ(N − 1)T )f(N − 1)

In general, we have

f̂ [n] =
N−1∑
k=0

exp

(
−i

2π

N
nk

)
f [k].

We present the equation above in matrix form as follows
f̂ [0]

f̂ [1]

f̂ [2]
...

f̂ [N − 1]

 =


W 0

N W 0
N W 0

N · · · W 0
N

W 0
N W 1

N W 2
N · · · WN−1

N

W 0
N W 2

N W 4
N · · · W

2(N−1)
N

...
...

...
. . .

...

W 0
N WN−1

N W
2(n−1)
N · · · W

(N−1)(N−1)
N




f [0]
f [1]
f [2]
...

f [N − 1]


where W = exp(−i2π/N).

Remark 2.1. If the waveform was periodic, the continuous Fourier transform may be calculated
across a defined range (often the fundamental period T0) as opposed to from −∞ to +∞. The
DFT similarly considers the data as if it were periodic since there are only a limited number of
input data points (i.e., f(N) to f(2N − 1) are equivalent from f(0) to f(N − 1)).

In addition, the inverse discrete Fourier transform of

f̂ [n] =
N−1∑
k=0

exp

(
−i

2π

N
nk

)
f [k]

is shown by

f [k] =
1

N

N−1∑
n=0

exp

(
i
2π

N
nk

)
f̂ [n].
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2.3 Noise Gaussian smoothing model

Applying the Riesz theorem, we use a linear radial kernel to make image isotropic linear
filtering boils down to a convolution of the image. The positivity of the kernel is often how the
smoothing requirement is represented. Naturally, the Gaussian is the model for these kernels

y → wGα(y) :=
exp

(
− |y|2

4α2

)
4πα2

.

As a result, wGα has standard deviation α and it is clear to observe that.

Theorem 2.2 (by Gabor 1960, see [16]). The convolution with a Gaussian kernel’s image
method noise wGα is given by

h− wGα ∗ h = −α2∆h+ o
(
α2

)
.

As this conclusion holds true for any positive radial kernel with limited variance, the Gaus-
sian example may be retained without losing its generality. If α is small enough, the preceding
estimate will be accepted. On the other hand, the size of the neighborhood involved in the
smoothing affects the noise reduction qualities, so that the noise gets reduced by averaging.
So in the following we assume that α = pε, where p stands for the number of samples of the
function u and noise n in an interval of length α. To assure a decrease in noise, the spatial
ratio k must be significantly greater than 1. The effect of a Gaussian smoothing on the noise
can be estimated at a reference pixel j = 0. Considering this pixel, we have

wGα ∗ n(0) =
∑
j∈I

∫
Qj

n(x)wGα(y)dy

=
∑
j∈I

njwGα(j)ε
2

where the Qj square pixels centered in j have size ε2, n(y) is being interpolated as a piecewise
constant function and wGα(j) denotes the mean value of the function wGα on the pixel j.

The additive of variances of independent centered random variables, where Var(y) denotes
the variance of a random variable with value X as follows

Var (wGα ∗ n(0)) =
∑
i

ε4wGα(i)
2σ2

≃ σ2ε2
∫

(wGα(y))
2dy =

ε2σ2

8πα2
.

Remark 2.3. Let n(y) be a piecewise constant white noise, with n(y) = yj on each square
pixel j. Assume that the nj are independent and identically distributed (i.i.d.) with zero mean
and variance σ2. After a Gaussian convolution of n by wGα, the ”noise residue” obtains

Var (wGα ∗ n(0)) ≃ ε2σ2

8πα2
.

In other words, the noise’s standard deviation, which may be seen as the noise amplitude, is
increased by ε

α
√
8π
.
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2.4 Algorithm and tools

Firstly, we consider the spectral theory Avk = λkvk. Then the eigenvectors of a circulation
matrix as follows

V = [v0 v1 . . . vN−1] (2.5)

where

vk =
1√
N

[
ei

2π
N

kn for n = 0, . . . , N − 1
]T

.

And the eigenvalues are given by

L = diag (λ0, . . . , λN−1)

where λk =
N−1∑
n=0

h[n]e−j 2π
N

kn =
√
N (v∗kh) is the DFT of h[n] at frequency 2π

N
k.

Secondly, the illustration is supported by Python software (version 3.10) on a laptop run
Windows 10 (64 bit), i7-11370H, 16 GB RAM, GPU NVIDIA RTX 3050Ti. To count the
running the CPU times, we use the Python calculate runtime in library import time with the
code

start_time = time.clock(),
and print(time.clock() - start_time, "seconds"). Some libraries are used in Python

software which are
scipy, scipy.fftpack, scipy.ndimage, numpy, matplotlib, matplotlib.colors and

LogNorm. The algorithm image processing in Python is shown in Algorithm 1.

3 Illustration

In this section, we present some example to check the theory part presented in the previous
section. First example, we use the input data is an image of the logo of Thu Dau Mot University
(TDMU) in Figures 1, the results are shown in Figures 3 and 3. Second example, a photo
of a campus at TDMU is used for this example in Figures 2 (source of pictures: https:

//tdmu.edu.vn). To convert these pictures to data in Python software, we divide it into size
400x256 pixels for each picture.
Acknowledgements. This work is supported by the conference “Mathematics and Applica-
tions” at Thu Dau Mot University.
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(a) The input data f (b) fG is noise by Gaussian model

Figure 1: The original and observed images of TDMU’s logo

(a) The input data f (b) fG is noise by Gaussian model

Figure 2: The original and observed images of a picture in campus at TDMU
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(a) The spectrum of the operator A

(b) The spectrum of FFT for α =
10−1

(c) Regularized data ĝα for α = 10−1,
CPU time: 8.428 seconds

(d) The spectrum of FFT for α = 2 ∗
10−1

(e) Regularized data ĝα for α = 2 ∗
10−1, , CPU time: 9.023 seconds

(f) The spectrum of FFT α = 4∗10−1 (g) Regularized data ĝα for α = 4 ∗
10−1, CPU time: 11.642 seconds

Figure 3: Recovering image of TDMU’s logo
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(a) The spectral theory of the operator A

(b) The spectral theory for α = 10−1 (c) Regularized data ĝα for α = 10−1,
CPU time: 9.452 seconds

(d) The spectral theory for α = 2 ∗
10−1

(e) Regularized data ĝα for α = 2 ∗
10−1, CPU time: 8.421 seconds

(f) The spectral theory for α = 4 ∗
10−1

(g) Regularized data ĝα for α = 4 ∗
10−1, CPU time: 13.532 seconds

Figure 4: Recovering image for a picture of campus at TDMU
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