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ABSTRACT
This paper is devoted to the study of a Kirchhoff wave equation with a viscoelastic
term in an annular associated with homogeneous Dirichlet conditions. At first, by
applying the Faedo-Galerkin, we prove existence and uniqueness of the solution of the
problem considered. Next, by constructing Lyapunov functional, we establish a sufficient
condition such that any global weak solution is general decay as t → +∞.
Keywords: Faedo-Galerkin method, Nonlinear Kirchhoff wave equation, local exis-
tence, general decay.

1 Introduction

In this paper, we study the following Dirichlet problem for a Kirchhoff wave equation with a
viscoelastic term in an annular

utt − µ
(
t, ∥u(t)∥20 , ∥ux(t)∥20

) 1
x

∂

∂x
(xux) +

∫ t

0

g (t− s)
1

x

∂

∂x
(xux (s)) ds

= f (x, t, u, ux, ut) , ρ < x < 1, 0 < t < T,

u(ρ, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.1)

where ρ ∈ (0, 1) is a given constant and µ, g, f, ũ0, ũ1 are given functions satisfying conditions
to be specified later. In Eq. (1.1), the nonlinear term
µ
(
t, ∥u(t)∥20 , ∥ux(t)∥20

)
depends on the integrals

∥ux(t)∥20 =
∫ 1

0

xu2
x (x, t) dx, ∥u(t)∥20 =

∫ 1

0

xu2 (x, t) dx. (1.2)

Eq.(1.1) herein is the bidimensional nonlinear wave equation describing the nonlinear vi-
brations of the annular membrane Ω = {(x, y) : ρ2 < x2 + y2 < 1}. In the vibration process-
ing, the area of the annular membrane and the tension at various points change in time.
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The conditions u(ρ, t) = u(1, t) = 0, on the boundaries Γρ = {(x, y) : x2 + y2 = ρ2} and
Γ1 = {(x, y) : x2 + y2 = 1} of the annular membrane is fixed.

It is known that Kirchhoff [6] first investigated the following nonlinear vibration of an elastic
string

ρhutt =

(
P0 +

Eh

2L

∫ L

0

∣∣∣∣∂u∂y (y, t)
∣∣∣∣2 dy

)
uxx, (1.3)

where u = u(x, t) is the lateral displacement at the space coordinate x and the time t, ρ is the
mass density, h is the cross-section area, L is the length, E is the Young modulus, P0 is the
initial axial tension.

In [3], Carrier established the equation which models vibrations of an elastic string when
changes in tension are not small

ρutt −
(
1 +

EA

LT0

∫ L

0

u2(y, t)dy

)
uxx = 0, (1.4)

where u(x, t) is the x−derivative of the deformation, T0 is the tension in the rest position, E
is the Young modulus, A is the cross - section of a string, L is the length of a string and and ρ
is the density of a material. Clearly, if properties of a material depends on x and t, there is a
hyperbolic equation of the type (Larkin [7])

utt −B

(
x, t,

∫ 1

0

u2 (y, t) dy

)
uxx = 0. (1.5)

The Kirchhoff - Carrier equations of the form Eq.(1.1) received much attention. We refer the
reader to, e.g., Cavalcanti et al. [1], [2], Ebihara, Medeiros and Miranda [4], Miranda et al. [15],
Lasiecka and Ong [8], Hosoya, Yamada [5], Larkin [7], Long et al. [10] - [12], Medeiros [14],
Menzala [16], Messaoudi [17], Ngoc et al. [18]- [22], Park et al. [23], [24], Rabello et al. [25],
Santos and et al. [26], Truong et al. [29]. In these works, the results concerning local existence,
global existence, asymptotic expansion, asymptotic behavior, decay and blow-up of solutions
have been examined.

Recently, Gongwei Liu [13] studied the damped wave equation of Kirchhoff type with initial
and Dirichlet boundary condition utt −M

(
∥∇u (t)∥2

)
∆u+ ut = g (u) trong Ω× (0,∞) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0 trên ∂Ω× (0,∞) ,

(1.6)

where Ω is a bounded domain with smooth boundary ∂Ω. Under the assumption that g is a
function with exponential growth at infinity, the author proved global existence and the decay
property as well as blow-up of solutions in finite time under suitable conditions.

In [15], Miranda and Jutuca dealt with the existence and uniqueness of solutions and expo-
nential decay of solutions of an initial-homogeneous boundary value problem for the Kirchhoff
equation.

In [1], [2], Cavalcanti also studied the existence and uniform decay of solutions of the
Kirchhoff -Carrier equation.

In [29], Truong et al. concerned with the global existence and regularity of weak solutions
to the linear wave equation

utt − uxx +Ku+ λut = f (x, t) , 0 < x < 1, t > 0, (1.7)
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with the initial conditions as in (1.1)3 and two-point boundary conditions. The exponential
decay of solutions was given there by using Lyapunov method.

Motivated by the above works, we study the unique existence and general decay of the
solution for Prob. (1.1) under suitable conditions on f, µ and initial data. Our paper is
organized as follows.

In Section 2, we present preliminaries with the notations, definitions, appropriate spaces
and required lemmas. In Section 3, we prove the existence and uniqueness of a weak solution
for Prob. (1.1). Finally, Section 4 is devoted to considering Prob. (1.1) in the case of µ =
µ
(
∥ux(t)∥20

)
, f (x, t, u, ux, ut) := −λut + f(u) + F (x, t), where λ > 0 is constant, and f, F are

given functions. In this section, we verify that, if

∫ ∥ũ0x∥20

0

µ(z)dz− p

∫ 1

ρ

xdx

∫ ũ0(x)

0

f(z)dz > 0,

and the initial energy E(0) =
1

2
∥ũ1∥20 +

1

2

∫ ∥ũ0x∥20

0

µ (z) dz −
∫ 1

ρ

xdx

∫ ũ0(x)

0

f(z)dz and F are

small enough, then any global weak solution of Prob.(1.1) is general decay as t → +∞. In the
proofs, we use the multiplier technique combined with a suitable Lyapunov functional. Our
results can be regarded as an extension and improvement of the corresponding results of [7], [10]
- [12], [18] - [22], [28], [29].

2 Preliminaries

First, we put Ω = (ρ, 1) , QT = Ω × (0, T ) , 0 < ρ < 1, T > 0 and denote the usual function
spaces used throughout the paper by the notations Cm = Cm

(
Ω
)
, Lp = Lp(Ω), Hm = Hm(Ω),

Wm,p = Wm,p (Ω) .
We remark that L2, H1, H2 are the Hilbert spaces with respect to the corresponding scalar

products

⟨u, v⟩ =
∫ 1

ρ

xu (x) v (x) dx, ⟨u, v⟩+ ⟨ux, vx⟩ , ⟨u, v⟩+ ⟨ux, vx⟩+ ⟨uxx, vxx⟩ . (2.1)

The norms in L2, H1 and H2 induced by the corresponding scalar products (2.1) are denoted
by ∥·∥0 , ∥·∥1 and ∥·∥2, respectively.

We then have the following lemma.
Lemma 2.1. The embedding H1

0 ↪→ C0
(
Ω
)
is compact and for all v ∈ H1

0 , we have

(i) ∥v∥C0(Ω) ≤
√
1− ρ ∥vx∥ ,

(ii) ∥v∥ ≤ 1− ρ√
2

∥vx∥ ,

(iii) ∥v∥0 ≤
1− ρ√

2ρ
∥vx∥0 .

We denote ∥·∥X for the norm in the Banach space X and call X ′ the dual space of X. We
denote Lp(0, T ;X), 1 ≤ p ≤ ∞ the Banach space of real functions u : (0, T ) → X measurable,
such that ∫ T

0

||u(t)||pX dt < +∞, 1 ≤ p < ∞,

and
∃M > 0 : ||u(t)||X ≤ M a.e t ∈ (0, T ) , p = ∞
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with

||u||Lp(0,T ;X) =


(∫ T

0

||u(t)||pX dt

)1/p

, 1 ≤ p < ∞,

ess sup
0<t<T

||u(t)||X , p = ∞.

We also denote

u(x, t),
∂u

∂t
(x, t),

∂2u

∂t2
(x, t),

∂u

∂x
(x, t),

∂2u

∂x2
(x, t)

by
u(t), ut(t) = u̇(t), utt(t) = ü(t), ux(t) = ∇u(t), uxx(t) = ∆u(t),

respectively

u(x, t),
∂u

∂t
(x, t),

∂2u

∂t2
(x, t),

∂u

∂x
(x, t),

∂2u

∂x2
(x, t).

3 Main results

3.1 The existence and uniqueness of a weak solution

The weak fomulation of Prob. (1.1) can be given in the following manner: Find u ∈ ŴT =
{u ∈ L∞(0, T ;H2 ∩H1

0 ) : u
′ ∈ L∞(0, T ;H1

0 ) and u′′ ∈ L∞(0, T ;L2)}, such that u satisfies the
following variational problem:

⟨u′′(t), v⟩+ µ[u](t) ⟨ux(t), vx⟩ =
∫ t

0

g (t− s) ⟨ux(s), vx⟩ ds+ ⟨f [u](t), v⟩ , (3.1)

for all v ∈ H1
0 , and a.e., t ∈ (0, T ), and the initial conditions

u(0) = ũ0, u′(0) = ũ1, (3.2)

where

f [u](x, t) = f (x, t, u(x, t), ux(x, t), ut(x, t)) , (3.3)

µ[u](t) = µ
(
t, ∥u(t)∥20 , ∥ux(t)∥20

)
.

Remark 3.1. The weak solutions have following properties

u ∈ L∞(0, T ;H2 ∩H1
0 ) ∩ C0([0, T ];H1

0 ) ∩ C1([0, T ];L2),

u′ ∈ L∞(0, T ;H1
0 ) ∩ C0([0, T ];L2),

u′′ ∈ L∞(0, T ;L2).

Fix T ∗ > 0 and we make the following assumptions:

(H1) (ũ0, ũ1) ∈ (H2 ∩H1
0 )×H1

0 ;
(H2) µ ∈ C1([0, T ∗]× R2

+), and there exist a positive constant µ1∗ such that
µ(t, y, z) ≥ µ1∗, ∀(t, y, z) ∈ [0, T ∗]× R2

+;
(H3) g ∈ C1([0, T ∗]);
(H4) f ∈ C1([ρ, 1]× [0, T ∗]× R3) such that

f (ρ, t, 0, y, 0) = f (1, t, 0, y, 0) = 0, ∀(t, y) ∈ [0, T ∗]× R.
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For each T ∈ (0, T ∗], we put

WT = {v ∈ L∞(0, T ;H2 ∩H1
0 ) : v

′ ∈ L∞(0, T ;H1
0 ), v

′′ ∈ L2(0, T ;L2)}, (3.4)

W1(T ) = C0([0, T ];H1
0 ) ∩ C1([0, T ];L2),

are Banach spaces with respect to the norms (Lions [9])

∥v∥WT
= max{∥v∥L∞(0,T ;H2∩H1

0 )
; ∥v′∥L∞(0,T ;H1

0 )
; ∥v′′∥L2(0,T ;L2)}, (3.5)

∥v∥W1(T ) = ∥v∥C0([0,T ];H1
0 )
+ ∥v′∥C0([0,T ];L2) .

For each M > 0, we denote

W (M,T ) = {v ∈ WT : ∥v∥WT
≤ M}, (3.6)

W1(M,T ) = {v ∈ W (M,T ) : v′′ ∈ L∞(0, T ;L2)}.

We establish the linear recurrent sequence {um} as follows:

We shall choose as first initial term u0 ≡ 0 and suppose that

um−1 ∈ W1(M,T ). (3.7)

We find um ∈ W1(M,T ) is a solution of variational problem associated Problem (1.1) as
follow: 

⟨u′′
m(t), v⟩+ µm(t) ⟨umx(t), vx⟩ =

∫ t

0

g(t− s) ⟨umx(s), vx⟩ ds

+ ⟨Fm(t), v⟩ , ∀v ∈ H1
0 ,

um(0) = ũ0, u′
m(0) = ũ1,

(3.8)

where

µm(t) = µ[um−1](t) = µ(t, ∥um−1(t)∥20 , ∥∇um−1(t)∥20), (3.9)

Fm(x, t) = f [um−1](x, t) = f
(
x, t, um−1(x, t),∇um−1(x, t), u

′
m−1(x, t)

)
.

Then we have the following theorem concerning the existence and uniqueness of a weak
solution.

Theorem 3.2. Let (H1)− (H4) hold. Then there exist constants M > 0, T > 0 such that:

(i) Problem (1.1) has a unique weak solution u ∈ W1(M,T ).

(ii) The linear recurrent sequence {um} defined by (3.7)-(3.9) converges to the solution u
strongly in the space W1(T ) with the estimate

∥um − u∥W1(T ) ≤
M

1− kT
km
T , for all m ∈ N, (3.10)

where kT ∈ [0, 1) is a constant independent of m.

Proof. The proof is similar to the argument in [28], so we omit the details.
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3.2 General decay of the solution

In this section, Prob. (1.1) is considered with µ := µ
(
∥ux(t)∥20

)
, f (x, t, u, ux, ut) := −λut +

f(u) + F (x, t), so Prob. (1.1) becomes the following
utt − µ

(
∥ux(t)∥20

)(
uxx +

1

x
ux

)
+

∫ t

0

g(t− s)

(
uxx (x, s) +

1

x
ux (x, s)

)
ds

+ λut = f (u) + F (x, t) , ρ < x < 1, t > 0,
u(ρ, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(3.11)

where 0 < ρ < 1, λ > 0 are the given constants, F, µ, g, ũ0, ũ1 are given functions. Here, we
shall prove that any global weak solution u (t) of Prob. (3.11) is general decay as t → +∞, i.e.,
there exist positive constants C̄, γ and a positive function ξ such that

∥u′ (t)∥20 + ∥ux (t)∥20 ≤ C̄ exp

(
−γ

∫ t

0

ξ(s)ds

)
, for all t ≥ 0, (3.12)

and

∫ +∞

0

ξ(s)ds = +∞.

First, we suppose that

(H1) ũ0 ∈ H2 ∩H1
0 , ũ1 ∈ H1

0 ;

(Ĥ2) µ ∈ C1(R+) and there exists a positive constant µ∗ such that µ(z) ≥ µ∗,
∀z ≥ 0;

(Ĥ3) g ∈ C1(R+);

(Ĥ4) f ∈ C1(R) and f(0) = 0;

(Ĥ5) F ∈ C1([ρ, 1]× R+).

Then, we have the following theorem.

Theorem 3.3. Let (H1), (Ĥ2) − (Ĥ5) hold and λ > 0. Then there exists a unique local weak
solution u of Prob. (3.11) such that

u ∈ L∞(0, T ;H2 ∩H1
0 ) ∩ C0([0, T ];H1

0 ) ∩ C1([0, T ];L2), (3.13)

u′ ∈ C0([0, T ];L2) ∩ L∞(0, T ;H1
0 ),

u′′ ∈ L∞(0, T ;L2),

with T > 0 small enough.

In what follows, we prove that if

∫ ∥ũ0x∥20

0

µ(z)dz−p

∫ 1

ρ

xdx

∫ ũ0(x)

0

f(z)dz > 0 and the initial

energy E(0) =
1

2
∥ũ1∥20 +

1

2

∫ ∥ũ0x∥20

0

µ (z) dz −
∫ 1

ρ

xdx

∫ ũ0(x)

0

f(z)dz and F are small enough,

then any global weak solution is general decay as t → +∞. For this purpose, we strengthen
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the following assumptions

(H̄3) f ∈ C1(R), f(0) = 0 and there exist constants α, β > 2; d1, d1 > 0, such that

(i) yf(y) ≤ d1

∫ y

0

f(z)dz, for all y ∈ R,

(ii)

∫ y

0

f(z)dz ≤ d1

(
|y|α + |y|β

)
, for all y ∈ R;

(H̄4) g ∈ C1 (R+) ∩ L1(R+) such that
(i) L∗ = µ∗ − g (∞) > 0,
(ii) There exists a function ξ ∈ C1 (R+) such that

(j) ξ′ (t) ≤ 0 < ξ (t) , ∀t ≥ 0,

∫ ∞

0

ξ (t) dt = ∞,

(jj) g′(t) ≤ −ξ (t) g(t) < 0, ∀t ≥ 0,

with g(t) =

∫ t

0

g (s) ds and g(∞) =

∫ ∞

0

g (s) ds;

(H̄5) F ∈ L∞(R+;L
2) ∩ L1(R+;L

2) and there exist positive constants C0, γ0 such that

∥F (t)∥20 ≤ C0 exp(−γ0t), ∀t ≥ 0;

(H̄6) p > d1.

We first construct the Lyapunov functional in the form

L (t) = E (t) + δΨ(t) , (3.14)

where δ > 0 is chosen suitably and

E(t) =
1

2
∥u′ (t)∥20 +

1

2
(g ∗ u)(t)−

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz (3.15)

+
1

2

(∫ ∥ux(t)∥20

0

µ (z) dz − g(t) ∥ux (t)∥20

)
=

1

2
∥u′(t)∥20 +

1

p
I(t)

+

(
1

2
− 1

p

)(
(g ∗ u) (t) +

∫ ∥ux(t)∥20

0

µ(z)dz − g(t) ∥ux (t)∥20

)
,

Ψ(t) = ⟨u (t) , u′ (t)⟩+ λ

2
∥u (t)∥20 , (3.16)

with

I(t) = (g ∗ u) (t) +
∫ ∥ux(t)∥20

0

µ(z)dz − g(t) ∥ux (t)∥20 − p

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz, (3.17)

and

(g ∗ u)(t) =
∫ t

0

g(t− s) ∥ux(t)− ux(s)∥2 ds, g(t) =

∫ t

0

g(s)ds. (3.18)

We have the following estimate for E ′ (t) .
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Lemma 3.4. For all ε1 > 0, we have

(i) E ′ (t) ≤ 1
2
∥F (t)∥0 +

1
2
∥F (t)∥0 ∥u′ (t)∥20 ,

(ii) E ′ (t) ≤ −(λ− ε1
2
) ∥u′ (t)∥20 −

1

2
ξ(t)(g ∗ u)(t) + 1

2ε1
∥F (t)∥20 .

(3.19)

Proof. Multiplying (3.11)1 by xu′ (x, t), and integrating over [ρ, 1], we get

E ′ (t) = −λ ∥u′(t)∥20 +
1

2
(g′ ∗ u)(t)− 1

2
g(t) ∥ux (t)∥20 + ⟨F (t) , u′ (t)⟩ . (3.20)

Using assumptions (H̄4), we obtain
1

2
(g′ ∗ u)(t) ≤ −ξ (t) (g ∗ u)(t), so

E ′ (t) ≤ ⟨F (t) , u′ (t)⟩ ≤ 1

2
∥F (t)∥0 +

1

2
∥F (t)∥0 ∥u

′ (t)∥20 .

By applying Cauchy-Schwartz inequality, we have

⟨F (t) , u′ (t)⟩ ≤ 1

2ε1
∥F (t)∥20 +

ε1
2
∥u′ (t)∥20 , ∀ε1 > 0. (3.21)

It is easy to see that (3.19)ii holds from (3.20) and (3.21). Lemma 3.4 is proven.

Lemma 3.5. Let (Ĥ2), (H̄3) − (H̄6) hold and (ũ0, ũ1) ∈ (H1
0 ∩ H2) × H1

0 such that I(0) > 0
and

η∗ ≡ L∗ − pd1(1− ρ)

[(
1− ρ

ρ

)α/2

Rα−2
∗ +

(
1− ρ

ρ

)β/2

Rβ−2
∗

]
> µmax −

p

d1
L∗, (3.22)

where

R∗ =

(
2pE∗

(p− 2)L∗

)1/2

, E∗ =

(
E(0 +

1

2
ϱ1

)
exp(ϱ1),

ϱ1 =

∫ ∞

0

∥F (t)∥ dt, L∗ = µ∗ − g (∞) , µmax = max
0≤z≤R2

∗
µ(z),

Then I(t) > 0 for all t ≥ 0.

Proof. By the continuity of I(t) and I(0) > 0, there exists T̃1 > 0 such that

I(t) = I(u(t)) > 0, ∀t ∈ [0, T̃1], (3.23)

we get

E(t) ≥ 1

2
∥u′(t)∥20 +

(
1

2
− 1

p

)[
(g ∗ u) (t) +

∫ ∥ux(t)∥20

0

µ(z)dz − g(t) ∥ux(t)∥20

]
(3.24)

≥ 1

2
∥u′(t)∥20 +

(p− 2)

2p

[
(g ∗ u) (t) + L∗ ∥ux(t)∥20

]
, ∀t ∈ [0, T̃1].

Combining (3.19)i, (3.24) and using Gronwall’s inequality, we obtain

∥ux(t)∥20 ≤
2p

(p− 2)L∗
E(t) ≤ 2pE∗

(p− 2)L∗
≡ R2

∗, ∀t ∈ [0, T̃1]. (3.25)
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Then it follows from (H3)(ii) that

p

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz (3.26)

≤ pd̄1

(
∥u(t)∥αLα + ∥u(t)∥β

Lβ

)
≤ pd̄1 (1− ρ)

√(1− ρ

ρ

)α

∥ux(t)∥α0 +

√(
1− ρ

ρ

)β

∥ux(t)∥β0


≤ pd̄1 (1− ρ)

√(1− ρ

ρ

)α

Rα−2
∗ +

√(
1− ρ

ρ

)β

Rβ−2
∗

 ∥ux(t)∥20 .

Thus, I(t) ≥ η∗ ∥ux(t)∥20 + (g ∗ u) (t) > 0, ∀t ∈ [0, T̃1], where the positive constant η∗ is
defined as in (3.22).

Put T∞ = sup {T > 0 : I(t) > 0, ∀t ∈ [0, T ]} . If T∞ < +∞, then by the continuity of I(t),
we have I(T∞) ≥ 0. If I (T∞) > 0, by the same arguments as above, we can deduce that there
exists T̃∞ > T∞ such that I(t) > 0, ∀t ∈ [0, T̃∞]. This is contrary to the definition of T∞, so we
get I(t) > 0, ∀t ≥ 0.

If I (T∞) = 0, then

0 = I (T∞) ≥ η∗ ∥ux(T∞)∥20 + (g ∗ u) (T∞) ≥ 0.

Therefore
ux(T∞) = (g ∗ u) (T∞) = 0.

By the fact that the functions s 7→ g (T∞ − s) ∥ux (s)− ux(T∞)∥20 is continuous on [0, T∞]
and g (T∞ − s) > 0, for all s ∈ [0, T∞] , and

(g ∗ u) (T∞) =

∫ T∞

0

g (T∞ − s) ∥ux (s)∥20 ds = 0,

we have ∥ux (s)∥0 = 0, for all s ∈ [0, T∞] . Thus, u (0) = 0. This is contrary to I (0) > 0.
Consequently, T∞ = +∞, i.e. I (t) > 0 for all t ≥ 0. Lemma (3.5) is proved.

Next, we put
E1 (t) = ∥u′(t)∥20 + ∥ux (t)∥20 + (g ∗ u)(t) + I(t). (3.27)

Then, we have the following Lemma.

Lemma 3.6. Let the assumptions of Lemma 3.5 hold. Then, there exist positive constants β1,
β1, β2, β2 such that

β1E1(t) ≤ L (t) ≤ β2E1(t), ∀t ≥ 0,

β1E1(t) ≤ E (t) ≤ β2E1(t), ∀t ≥ 0.

Proof. Lemma (3.6) is proved by using some simple estimates, hence we omit the details.

Lemma 3.7. For all ε2 > 0, we have

Ψ′ (t) ≤ ∥u′ (t)∥2 +
(
d1δ1
p

+
1

2ε2

)
(g ∗ u)(t) + 1

2ε2
∥F (t)∥20 −

d1δ1
p

I(t) (3.28)

−
(
µ∗ + η∗

d1
p
(1− δ1)−

(
1 +

ε2
2
− d1

p

)
g(∞)− ε2(1− ρ)2

4ρ
− d1

p
µmax

)
∥ux (t)∥20 .
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Proof. Multiplying (3.11)1 by xu (x, t) , and integrating over [ρ, 1], we get

Ψ′ (t) = ∥u′ (t)∥20 − µ
(
∥ux(t)∥20

)
∥ux (t)∥20 + ⟨f(u(t)), u(t)⟩ (3.29)

+

∫ t

0

g(t− s) ⟨ux (s) , ux (t)⟩ ds+ ⟨F (t) , u (t)⟩ .

From the following inequalities

−µ
(
∥ux(t)∥2

)
∥ux (t)∥20 ≤ −µ∗ ∥ux (t)∥20 , (3.30)∫ t

0

g(t− s) ⟨ux (s) , ux (t)⟩ ds ≤
(
1 +

ε2
2

)
g(t) ∥ux (t)∥20 +

1

2ε2
(g ∗ u)(t),

⟨f(u(t)), u(t)⟩ ≤ d1
p

[∫ ∥ux(t)∥20

0

µ(z)dz + (g ∗ u) (t)− g(t) ∥ux(t)∥20 − I(t)

]
,

I(t) ≥ (g ∗ u)(t) + η∗ ∥ux (t)∥20 ,

⟨F (t), u(t)⟩ ≤ ε2(1− ρ)2

4ρ
∥ux(t)∥20 +

1

2ε2
∥F (t)∥20 , ∀ε2 > 0,

we have

Ψ′ (t) ≤ ∥u′ (t)∥20 − µ∗ ∥ux (t)∥20 +
(
1 +

ε2
2

)
g(t) ∥ux (t)∥20 +

1

2ε2
(g ∗ u)(t)

+
d1
p

[∫ ∥ux(t)∥20

0

µ(z)dz + (g ∗ u) (t)− g(t) ∥ux(t)∥20 − I(t)

]

+
ε2(1− ρ)2

4ρ
∥ux(t)∥20 +

1

2ε2
∥F (t)∥20

≤ ∥u′ (t)∥20 +
(
d1
p

+
1

2ε2

)
(g ∗ u)(t) + 1

2ε2
∥F (t)∥20 −

d1δ1
p

I(t)− d1(1− δ1)

p
I(t)

−
(
µ∗ −

(
1 +

ε2
2

)
g(∞)− ε2(1− ρ)2

4ρ
− d1

p
µmax

)
∥ux (t)∥20

≤ ∥u′ (t)∥2 +
(
d1δ1
p

+
1

2ε2

)
(g ∗ u)(t) + 1

2ε2
∥F (t)∥20 −

d1δ1
p

I(t)

−
(
µ∗ + η∗

d1
p
(1− δ1)−

(
1 +

ε2
2
− d1

p

)
g(∞)− ε2(1− ρ)2

4ρ
− d1

p
µmax

)
∥ux (t)∥20 .

Lemma (3.7) is proved completely. □

Putting ρ (t) =
1

2

(
1

ε1
+

δ

ε2

)
∥F (t)∥20 , from Lemma 3.4–Lemma 3.7, we obtain

L′ (t) ≤ −(λ− ε1
2
− δ) ∥u′ (t)∥20 −

1

2
ξ(t)(g ∗ u)(t) + ρ (t) (3.31)

+ δ

(
d1δ1
p

+
1

2ε2

)
(g ∗ u)(t)− δd1δ1

p
I(t)

− δ

(
µ∗ + η∗

d1
p
(1− δ1)−

(
1 +

ε2
2

)
g(∞)− ε2(1− ρ)2

4ρ
− d1

p
µmax

)
∥ux (t)∥20 .
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We have

lim
δ1→0+
ε2→0+

(
µ∗ + η∗

d1
p
(1− δ1)−

(
1 +

ε2
2

)
g(∞)− ε2(1− ρ)2

4ρ
− d1

p
µmax

)

= µ∗ + η∗
d1
p

− g(∞)− d1
p
µmax > 0.

Then, we can choose δ1 ∈ (0, 1) and ε2 > 0 small enough such that

θ1(δ1, ε2) ≡ µ∗ + η∗
d1
p
(1− δ1)−

(
1 +

ε2
2

)
g(∞)− ε2(1− ρ)2

4ρ
− d1

p
µmax > 0.

Moreover, we also choose δ > 0, ε1 > 0 small enough and satisfying

θ2(ε1, δ) = λ− ε1
2
− δ > 0.

Putting

θ∗ = min

{
δθ1, δθ2,

δd1δ1
p

}
, θ3 = δ

(
d1δ1
p

+
1

2ε2

)
,

we get that

L′ (t) ≤ −θ∗E1(t) + (θ∗ + θ3)(g ∗ u)(t) + ρ (t) . (3.32)

Combining (3.19)ii and (3.32), we obtain

ξ(t)L′ (t) ≤ −θ∗ξ(t)E1(t) + (θ∗ + θ3)ξ(t)(g ∗ u)(t) + ξ(0)ρ (t)

≤ −θ∗ξ(t)E1(t) + 2(θ∗ + θ3)

[
−E ′(t) +

1

2ε1
∥F (t)∥20

]
+ ξ(0)ρ (t)

≤ −θ∗ξ(t)E1(t)− 2(θ∗ + θ3)E
′(t) + C0 exp(−γ0t),

where C0 =

[
θ∗ + θ3

ε1
+

1

2

(
1

ε1
+

δ

ε2

)
ξ(0)

]
C0.

Setting the functional L(t) = ξ(t)L (t) + 2(θ∗ + θ3)E(t), we have

L(t) ≤
[
ξ(0)β2 + 2(θ∗ + θ3)β2

]
E1(t) ≡ β̂2E1(t), (3.33)

L′(t) ≤ ξ′(t)L (t) + ξ(t)L′ (t) + 2(θ∗ + θ3)E
′(t)

≤ −θ∗ξ(t)E1(t) + C0 exp(−γ0t)

≤ − θ∗

β̂2

ξ(t)L(t) + C0 exp(−γ0t).

By choosing 0 < γ < min

{
θ∗

β̂2

,
γ0
ξ(0)

}
, we get

L′(t) + γξ(t)L(t) ≤ C0 exp(−γ0t). (3.34)

It leads to

L(t) ≤
(
L(0) +

C0

γ0 − γξ(0)

)
exp

(
−γ

∫ t

0

ξ(s)ds

)
. (3.35)
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On the other hand, we also have

L(t) = ξ(t)L (t) + 2(θ∗ + θ3)E(t) ≥ 2(θ∗ + θ3)β1E1(t) (3.36)

≥ 2(θ∗ + θ3)β1

(
∥u′(t)∥20 + ∥ux(t)∥20

)
.

Therefore, we obtain the main result in this section as follows.

Theorem 3.8. Let the assumptions of Lemma 3.5 hold. Then, any global weak solution of
Prob. (3.11) is general decay as t → +∞. Moreover, there exist positive constants C̄, γ̄, such
that

∥u′ (t)∥20 + ∥ux (t)∥20 ≤ C̄ exp

(
−γ

∫ t

0

ξ(s)ds

)
, ∀t ≥ 0. (3.37)
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